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Abstract

Although antibodies have become the fastest-growing class of therapeutics on the market, it is still
challenging to develop them for therapeutic applications, which often require these molecules to withstand
stresses that are not present in vivo. We define developability as the likelihood of an antibody candidate with
suitable functionality to be developed into a manufacturable, stable, safe, and effective drug that can be
formulated to high concentrations while retaining a long shelf life. The implementation of reliable devel-
opability assessments from the early stages of antibody discovery enables flagging and deselection of
potentially problematic candidates, while focussing available resources on the development of the most
promising ones. Currently, however, thorough developability assessment requires multiple in vitro assays,
which makes it labor intensive and time consuming to implement at early stages. Furthermore, accurate
in vitro analysis at the early stage is compromised by the high number of potential candidates that are often
prepared at low quantities and purity. Recent improvements in the performance of computational pre-
dictors of developability potential are beginning to change this scenario. Many computational methods only
require the knowledge of the amino acid sequences and can be used to identify possible developability issues
or to rank available candidates according to a range of biophysical properties. Here, we describe how the
implementation of in silico tools into antibody discovery pipelines is increasingly offering time- and cost-
effective alternatives to in vitro experimental screening, thus streamlining the drug development process.
We discuss in particular the biophysical and biochemical properties that underpin developability potential
and their trade-offs, review various in vitro assays to measure such properties or parameters that are
predictive of developability, and give an overview of the growing number of in silico tools available to
predict properties important for antibody development, including the CamSol method developed in our
laboratory.
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1 Introduction

Antibody-based therapies are revolutionizing the treatment of
major human conditions, including cancer, inflammatory and auto-
immune diseases. At the time of writing, about 90 antibody drugs
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are available on the market, and many more are currently in late-
stage clinical studies or under regulatory review [1]. The develop-
ment of antibody drugs, however, remains a slow and expensive
process, which requires expert knowledge in many areas, including
the discovery, characterization, and optimization of antibody mole-
cules, manufacturing, pharmacokinetic and clinical studies, and
regulatory affairs. Because of the challenges in the development
and manufacturing of antibody drugs, as well as for specific com-
mercial reasons, antibody-based therapies are typically substantially
more expensive than small-molecule and peptide therapies, with a
mean annual price of nearly $100,000 in the US [2].

In addition to the challenge of achieving the required
biological activity, there are many other obstacles on the route of
antibody candidates toward clinical reality. These include: (1) man-
ufacturability risks such as poor expression, instability during virus
inactivation or elution, and stickiness to purification columns;
(2) formulation risks such as chemical and conformational instabil-
ity, self-association, high viscosity and aggregation; and (3) in vivo
issues such as lack of specificity, immunogenicity, precipitation
upon administration, and rapid clearance. Taken together, these
factors determine the likelihood of the successful development of
an antibody into a stable, safe, and effective drug, which is known as
developability.

In the last decade, the in vitro screening for these characteristics
has become routine in most industrial pipelines [3] (Fig. 1). The
implementation of developability screenings reduces the risk of
late-stage failures by aiding the selection of those antibodies
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Fig. 1 Simplified pipeline of therapeutic antibody discovery and preclinical development. Schematic showing
the three main phases of preclinical antibody development: antibody discovery, hit prioritization and optimi-
zation, and lead development. The specific procedures carried out at each phase may vary substantially from
company to company and among different projects. At each phase, the number of antibody candidates is
greatly reduced. Candidates that are taken forward are primarily selected based on functionality, but
measurements of developability potential and of biophysical properties are increasingly employed to rule
out potentially problematic candidates
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embodying the best compromise between biological activity and
developability potential at the early stages of a project. With the
growing competition within the antibody pharmaceutical space,
and the targeting of increasingly complex antigens, an optimization
phase is often required after antibody discovery. During hit optimi-
zation, engineering campaigns are carried out most often with the
aim of improving binding affinity, and sometimes also with the aim
of introducing pH dependent target binding or species cross reac-
tivity [4]. Engineering of affinity is a delicate maneuver, which
typically requires careful counter screenings with developability
assays, as mutations that improve affinity have often been reported
to negatively affect other essential properties, such as stability,
solubility, or specificity [5, 6].

Early developability screenings are often challenged by the
large number of antibody candidates and by the preparation quality
that are available at the early stages of preclinical development.
Preliminary hits from antibody discovery campaigns are commonly
prepared in minute amounts, low concentrations, and relatively low
purity [7]. These factors may cause large errors and issues of mea-
surement reproducibility [3]. While properties like conformational
stability can now be measured with high accuracy and throughput
using small amounts of material, other essential properties such as
solubility, viscosity, and specificity remain much more challenging
to assess in a quantitative way. For this reason, most of the devel-
opability assays that are usually implemented at the early stages of
preclinical development are the result of a compromise between
accuracy, throughput and material requirement. In particular, these
screening methods do not attempt to directly measure properties
such as solubility, aggregation, or viscosity, but they rather deter-
mine parameters that are easier to measure and considered to be
predictive of these properties [7]. Because of the challenges asso-
ciated with accurately measuring directly some biophysical proper-
ties, many developability assays probing self-association and
solubility in different ways have been developed. Currently, com-
prehensive developability assessments require the combination of
several in vitro screening assays, since no single assay appears to be
fully predictive. This aspect makes developability assessment partic-
ularly demanding in terms of both time and resources [8].

Overall, the current limitations and challenges of experimental
assessments of developability potential expose a pressing need for
more effective, cheaper, and faster ways to assess antibody devel-
opability. Given the promising advances in the computational pre-
diction of solubility, aggregation, and viscosity that have been made
in the last decade [9–17], in silico predictors are emerging as a
convenient alternative to experimental approaches due to their
rapidity and lack of materials requirement. This review focuses on
various aspects of antibody developability, with a focus on in silico
predictions and their interplay with in vitro assays.
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2 Requirements for Therapeutic Antibody Development

Antibodies for therapeutic applications are required to endure and
survive a wide range of stresses related to manufacturing, develop-
ment, shipping, storage, and administration in order to become
safe and effective therapeutic agents approved for usage in patients
[18–21] (Table 1).

2.1 Expression

and Purification

Upon recombinant expression, antibodies may aggregate as a result
of overexpression and can accumulate as inclusion bodies in cells or
as aggregates in culture media, which may hinder yield and manu-
facturability [22]. Purification represents another challenge as anti-
bodies are required to bind to different chromatography resins and
must often endure low pH conditions. For example, during affinity
purification using Protein A, which is a common unit operation
during antibody purification, elution typically occurs at around

Table 1
List of common physical and biological stresses that therapeutic antibodies encounter during
manufacture, development, storage, and administration

Stress Manufacturing Development and administration

Agitation/stirring In fermentation tanks, during
pumping and product
transportation

Sample handling

pH stress Low pH during Protein A
purification and virus
inactivation

Formulation, blood pH

Salt stress Purification Formulation, blood salt concentration

Very high
concentration

Purification Storage and subcutaneous administration

Shear stress Ultrafiltration, diafiltration,
pumping

Filtration, injection

Air water interface Vial filling, storage Vial filling, storage, transport

Solid interface Steel tanks, membrane filters,
purification columns, vial or
syringe interphases

Vial or syringe interphases, biological
membranes

Freeze/thaw cycles
and temperature
changes

Storage, transport Storage (4 �C or frozen) vs injection (37 �C)

Prolonged storage 2 years stability of liquid formulation (4 �C),
often including 2–4 weeks of room
temperature stability
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pH 3–4 followed by immediate pH adjustment to around pH 7–8
[23]. In addition, to ensure viral safety of antibody products des-
tined for therapeutic usage, virus inactivation at low pH is com-
monly performed [24]. Moreover, antibodies need to withstand
varying salt conditions during purification, as some buffers contain
high amounts of salts. In theory, highly soluble and hydrophilic
antibodies should feature a better tolerance against salt stress, while
more hydrophobic antibodies may encounter problems such as
aggregation or precipitation during purification [25, 26].

2.2 Sample

Preparation

and Transport

After purification, various filtration processes are performed, to
remove residual contaminants, for product concentration, or buffer
exchange. Extensive membrane contact has been associated to
product loss and aggregation [20]. Once impurities are removed
and a formulation selected, antibodies are collected into bags,
bottles, stainless steel tanks or vials and may be frozen for long-
term storage. Freezing prevents microbial growth in liquid formu-
lations and eliminates foaming during transport. However,
repeated freeze-thaw cycles can be associated with product deterio-
ration and are an additional stress factor on the antibody [20].

During their lifetime, antibody drugs are exposed to a variety of
interfaces that they would never encounter while performing their
normal function in living organisms. These interfaces can be gener-
ally divided into air, solid, and liquid interfaces. Adsorption to these
interfaces can impact the conformational stability and hence the
activity of the drug [21, 27]. For example, during storage of liquid
formulations, proteins will encounter an air–water interface in the
headspace of vials. This interface adsorption is likely exacerbated by
agitation caused by the transportation of the pharmaceutical prod-
uct [28, 29]. As the air–water interface is relatively hydrophobic,
the structure of adsorbed proteins may be slightly perturbed,
thereby inducing aggregation [30, 31]. In addition, syringes are
commonly treated with hydrophobic silicone oil, which may also
induce aggregation [32, 33]. Finally, glass, plastic, and stainless
steel are ubiquitous surface materials in therapeutic protein pro-
duction, storage and administration equipment. Under high shear
conditions or agitation, microparticles of these materials can con-
taminate protein formulations, which have also been reported to
induce antibody aggregation [34, 35].

2.3 Storage

and Administration

Most proteins are highly unstable in the gastro-intestinal tract,
because of their susceptibility to enzymatic degradation and the
low pH of the environment. Furthermore, large proteins like
monoclonal antibodies have very low membrane permeability and
therefore low oral bioavailability [36]. For these reasons, the vast
majority of protein-based drugs are administered through paren-
teral (intravenous or subcutaneous) administration [37]. In
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particular, antibody therapeutics that require frequent administra-
tion, such as those for chronic diseases, are typically administered
subcutaneously [18]. This route of administration enables the rapid
administration also outside the hospital, which is convenient for
patients. However, highly concentrated antibody solutions
(�100 mg/ml) are usually needed to achieve the relevant thera-
peutic dosing in small injection volumes (<1.5 ml). Therefore,
therapeutic antibodies destined to subcutaneous injection must
be formulated at concentrations much higher than those at which
antibodies are typically produced in living organisms, and they must
remain active at those concentrations over the shelf life of the
product (typically �1 year), which is far longer than the typical
in vivo half-life of antibodies from the immune system (~20 days).
Formulation screenings aid to determine conditions (e.g., pH,
ionic strength, and excipients) at which therapeutic antibodies are
maintained in a stable, soluble state with low viscosity for a long
time [18, 37, 38]. Nonetheless, these screenings can be resource-
intensive and time-consuming, and are highly constrained by the
requirements that the formulation must be safe for patients, and
must also guarantee product stability upon delivery into the subcu-
taneous space until absorption [18, 38, 39].

Another challenge encountered upon administration is shear
stress, which can occur during injection and may cause antibody
aggregation [40, 41]. It has been suggested that aggregation-
triggering factors are not only magnitude and duration of shear
exposure, but also surface interactions (e.g., air–water interphase or
solid-solid interactions). Surface adsorption and associated confor-
mational perturbations may act synergistically in the presence of
shear stress which could exacerbate antibody unfolding and aggre-
gation [40, 41]. A further concern is the possibility of product
precipitation at the injection site and/or altered pharmacokinetics
resulting from the complexity of the human subcutaneous region
[42]. Strategies to mitigate the risk of precipitation and increase the
bioavailability of monoclonal antibody formulations are reviewed in
Refs. 39, 42.

Overall, the stringent requirements of therapeutics applica-
tions, and in particular the constraints imposed by manufacturing,
development, shipping, storage, and administration, imply that
most biophysical properties of antibodies must be optimized
beyond their typical natural levels [6]. Therefore, biophysical prop-
erties including thermodynamic stability and solubility, but also
chemical liabilities like oxidation and deamidation, play a key role
in determining the success of therapeutic antibody development
[8, 15, 43].
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3 Biophysical and Biochemical Determinants of Developability

The clinical success of an antibody candidate is determined by its
biological activity as well as by many additional extrinsic and intrin-
sic factors. Extrinsic factors include administration dosage and
frequency, administration route, formulation components and con-
centration, and selected manufacturing and storage conditions,
while intrinsic factors are biophysical and biochemical properties
of the antibody itself, which ultimately determine its developability
potential. Highly optimized biophysical properties often translate
into high expression, high conformational and colloidal stability,
low viscosity, and often even low immunogenicity and poly-
specificity [3, 8]. In this section we briefly discuss the key biochem-
ical and biophysical properties that underpin developability poten-
tial of antibodies.

3.1 Chemical

Stability

Deamidation, isomerization, oxidation, and improper glycosylation
are examples of chemical liabilities that may occur in antibodies and
that can be linked to safety and efficacy issues [44]. Deamidation of
asparagine, succinimide formation, and isomerization of aspartate
residues are some of the most common chemical liabilities encoun-
tered during manufacture, storage and after in vivo administration
[3]. Deamidation and isomerization reactions are highly dependent
on the solution pH and the storage temperature, as well as on the
structural context in which the residues are found. In particular,
asparagine and aspartic acid in more flexible regions, such as the
CDR loops, are more prone, respectively, to deamidation and
isomerization than those found in rigid regions, such as the frame-
work. As CDR loops are often critical for binding, this fact trans-
lates into an increased chance of chemical liabilities impacting
functionality. Asparagine residues followed by certain sequence
motifs including glycine, serine, threonine, aspartate, and histidine
have been reported as degradation hotspots [3, 9, 44]. Experimen-
tally, degradation propensities can be tested by subjecting samples
to temperature and pH stresses like slightly acidic (e.g., 2 weeks at
40 �C at pH 5–6) and mildly basic (e.g., 2 weeks at 40 �C at
pH 7.4) conditions. Strategies to mitigate these reactions include
re-engineering of the antibody hotspot and/or formulation opti-
mizations to reduce the risk of deamidation and isomerization
during storage [3]. A recent analysis of 131 clinical-stage mAbs
found a relatively high frequency of deamidation and isomerization
under low and high pH stress, highlighting the key role that for-
mulation is likely to play in preventing the occurrence of these
liabilities in the pharmaceutical products assessed [45].

Oxidation of methionine and tryptophan residues represents
another chemical liability. Reactive oxygen species can be generated
in antibody formulations in the presence of light [46], surfactants
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[47] and metal ions and surfaces [48, 49] which may cause oxida-
tion and the formation of aggregates [49]. Antibody formulations
can be subjected to forced oxidation reactions (e.g., with 2,2-azo-
bis(2-amidinopropane)dihydrochloride) to probe for oxidation
propensities of methionine and tryptophan hotspots [50]. The
addition of antioxidants, such as methionine, to formulations may
stabilize the antibodies and mitigate oxidation [51].

The production of homogenous antibodies with consistent
human-like glycosylation profiles can also be challenging
[52]. Consistent glycosylation patterns are important as the posi-
tion of the Fc region carbohydrate can impact the functional prop-
erties of an antibody [53] and determine in vivo clearance rates
[54]. Potential N-glycosylation sites can be identified by the con-
sensus motifs NXS or NXT (X can be any amino acid except
proline) in the sequence [3]. Lysine residues are known to be
subjectable to glycation. Glycation is a post-translational modifica-
tion that occurs when the amine group of the lysine reacts with
reducing sugars that can be present during manufacturing in cell
media, storage, or in vivo after administration [3]. Experimentally,
the glycation susceptibility can be determined by forced glycation
assays, where antibodies are incubated in the presence of reducing
sugars and analyzed using mass spectrometry methods [3]. Lastly,
unpaired cysteine residues may under certain conditions lead to
disulfide scrambling, leading to covalently linked dimers and oligo-
mers, which may constitute an efficacy as well as a safety issue [55].

To mitigate the occurrence of chemical liabilities antibody
sequences harboring unpaired cysteine, methionine and trypto-
phan residues at non-conserved positions, or other known liability
hotspots are often excluded during lead selection. Alternatively,
mutagenesis is carried out to remove such liabilities, which entails
reassessing the activity and structural integrity of the mutated anti-
bodies [56–59].

3.2 Conformational

Stability and its Link

to Aggregation

Conformational stability is an essential property of antibodies to
ensure efficacy and safety during manufacturing, formulation, refri-
gerated storage, distribution, and administration [20, 60]. Further-
more, various studies [8, 61, 62], have reported a correlation
between conformational stability and recombinant expression
yield from yeast and mammalian cells. The thermodynamic stability
of an antibody determines the equilibrium between the unfolded
and the native states (Fig. 2). Fully or partially unfolded antibodies
not only lose their activity, but can readily aggregate, as the solubil-
ity of the unfolded state is typically lower than that of the native
state [63]. Aggregation can be irreversible, and aggregated anti-
bodies have been reported to induce immunogenicity upon injec-
tion [18, 64, 65], which can be fatal in some cases [66]. Although it
is still not clear which types of aggregates mediate immunogenicity,
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regulatory agencies are cautious on this aspect, and require formu-
lations with a minimum amount of aggregates at the end of formu-
lation shelf life to grant market approval [67–69].

Under physiological conditions monoclonal antibodies typi-
cally have a thermodynamic stability corresponding to a Gibbs
free energy of unfolding (ΔGu) in the range of 10–20 kcal/mol,
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Fig. 2 Competition between folding, unfolding, and aggregation in antibody formulations. (A, B) The different
states that antibodies can populate in formulations are concisely represented through free-energy surfaces.
The green dotted line separates the region of the landscape where the enthalpic contributions to the free
energy come from intramolecular interactions (folding and unfolding), from that where these contributions
come also from intermolecular interactions (self-association and aggregation). The roughness of the free-
energy landscape reflects the highly dynamical nature of antibodies, and it results in the presence of a variety
of conformational states that populate the different local minima. At equilibrium, these conformations
interconvert with each other (following for example the gray dashed arrows) with rates that depend on the
height of the free-energy barriers that separate different minima, while the relative populations of the various
states depend on the free-energy differences between the minima. Some of these conformations, such as the
aggregated state in panel A, are more kinetically trapped than others, as to escape their local minimum and
reach other states they need to climb up high free-energy barriers. The vertical blue arrows in panel
A highlight some particularly important free-energy differences, which correspond to biophysical properties
that are commonly measured and that underpin developability potential. For instance, the conformational
stability is the free-energy difference between the native and the unfolded state. Conversely, colloidal stability
is a kinetic property that depends on the height of the free-energy barrier that separates the native state from
the aggregated states (the free energy needed to cross the green line). The overall shape of this landscape,
and consequently all these biophysical properties, depend on the amino acid sequence of an antibody, but also
on extrinsic properties such as protein concentration, formulation composition, and temperature. Panel B is a
schematic landscape of a low-concentration formulation, or alternatively of a highly optimized antibody that
remains very soluble even at high concentration. The ideal landscape of a pharmaceutical formulation should
look more like that in panel B and should retain, even at very high concentrations, one single deep minimum
corresponding to the native state, with few other competing states at much higher free energies
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depending on the antibody under scrutiny as well as buffer and
temperature [70, 71]. In particular, as monoclonal antibodies are
multi-domain proteins, the stability of individual domains may be
significantly lower than the total net apparent stability [70, 71], and
partial unfolding is often enough to trigger aggregation [72]
(Fig. 2). A ΔGu of 10 kcal/mol corresponds to an equilibrium
constant K ¼ [D]/[N] ¼ e–ΔG/RT of approximately 10�8 at 4 �C,
[73] chosen as the typical temperature of refrigerated storage. This
number indicates that unfolding is rare, as only one of every 108

antibody molecules is in the unfolded state when the solution is at
equilibrium, or, in other words, the native state population is
99.999999%. Nonetheless, a solution containing 50 mg of mono-
clonal antibodies, which is at the lower end of the spectrum typical
of pharmaceutical formulations, contains 2 � 1017 molecules
(MW ~ 150 kDa), which means that more than 2 billion molecules
are in the unfolded state at any given time at equilibrium, and can
act as seeds of aggregation, or create a variety of other problems
including, for example, eliciting an immunogenic response. How-
ever, given that the equilibrium constant depends exponentially on
the thermodynamic stability, a ΔGu of 20 kcal/mol instead of
10 brings the number of unfolded antibody molecules in every
50 mg of formulation from more than 2 billions to only about
30. The difference between these two numbers highlights the
importance of selecting therapeutic candidates with the highest
possible intrinsic stability, in order to maximize their developability
potential. In summary, the presence of unfolded molecules in solu-
tion is not only linked to loss of function, but also to aggregation,
immunogenicity, and ultimately safety [18, 64, 65]. Moreover, the
intrinsic stability of an antibody translates into its ability to with-
stand physical or chemical stresses (Table 1), while retaining its
structural conformation and activity.

3.3 Solubility Owing to the stringent requirements of therapeutic applications,
which demand antibody drugs to be formulated at very high con-
centrations and to remain soluble and active for the shelf life of the
product, solubility is a key biophysical property underpinning
developability potential [18, 20, 74]. Poor solubility is a major
bottleneck for manufacturing [19, 20], quality, and safety of phar-
maceutical formulations [18, 19, 43]. The solubility of an antibody
is dependent on its amino acid sequence, its net charge and spatial
charge distribution, as well as on other extrinsic factors, like storage
temperature and buffer composition [75]. However, the solubility
of complex macromolecules like monoclonal antibodies cannot be
defined in absolute terms, which makes quantitative assessments
highly problematic. The thermodynamic solubility of a substance is
an equilibrium property defined as the value of the concentration—
termed critical concentration—at which the soluble and insoluble
states are in equilibrium. While this definition is rigorous, it only
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applies directly to substances that have just two relevant states, a
soluble state (the liquid phase) and an insoluble state (the solid
phase) [75, 76]. The vast majority of proteins, including antibo-
dies, are not substances of this type. Depending on the concentra-
tion, most proteins populate a variety of states, including dimers,
various oligomers, large amorphous aggregates and precipitates,
and occasionally fibrils. Given this heterogeneity, the boundary
between the soluble and insoluble states is ultimately arbitrary
and operationally dependent on the method used to separate the
two phases (e.g., on centrifugation speed or filter size). This aspect,
and the fact that some pathways may lead to irreversible aggrega-
tion in the timescales relevant for therapeutic formulations, com-
plicate the definition of protein solubility as an absolute quantity,
which poses important limitations to our ability to measure solu-
bility as an absolute value [7, 63]. Despite this problem, it is
possible to measure solubility differences among antibodies or
among different formulations of the same antibody, or at least
differences in the propensity to self-associate, precipitate, or popu-
late aggregated states, which are common proxies for solubility
across the literature [25, 75, 77–80]. However, these relative mea-
surements are not comparable across different experimental assays,
or across different conditions, including buffer composition, tem-
perature, incubation times, protein concentration, centrifugation
speed and time, size of filters, type of precipitant or chromatogra-
phy columns. Moreover, measurements of solubility difference,
especially when carried out at the early stages of preclinical devel-
opment, when the material available is little and at low purity, may
have poor reproducibility and can often be significantly affected by
impurities [3].

3.4 Colloidal Stability

and its Link

to Self-Association,

Aggregation,

and Viscosity

The overall stability of high-concentration formulations on the
time scale of the product shelf-life is not only defined by conforma-
tional stability and solubility, but also by colloidal stability. Colloi-
dal stability strongly depends on intermolecular interactions, and
describes the free-energy barrier between the native and aggregated
states [81] (Fig. 2). While solubility is defined as the critical con-
centration observed when soluble and insoluble phases are in equi-
librium, colloidal stability is defined by the long-term integrity of a
formulation, and hence by the time it takes for aggregation to
occur. In some instances, the timescales of these processes can be
very long, so that in practice an antibody may be formulated around
its critical concentration and still constitute a viable clinical product.

Antibodies are generally stable at low concentrations, but their
behavior changes at high concentrations (50–150 mg/ml).
Decreased intermolecular distances between antibodies at high
concentrations lead to an increased likelihood of molecular colli-
sions and reduce the entropic penalty of association [82], so that
attractive short-range interactions may overcome repulsive longer-
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range interactions, such as repulsion between equal charges
[77]. Consequently, the formation of reversibly associating inter-
molecular complexes may occur [83], and these may act as seeds for
the formation of kinetically trapped aggregates [84].

Both reversible self-association and kinetically trapped aggre-
gation can further result in dramatic increases in viscosity, which
negatively impacts manufacturing and patient administration
[19, 77, 85]. High viscosity formulations can cause pain upon
injection [85], and can also be a manufacturing challenge by block-
ing processing pumps [18]. For example, attractive electrostatic
interactions e.g., between Fab-Fab domains [77] are often impli-
cated in governing self-association and viscosity behaviors of anti-
bodies. Also, an increased positive charge in the CDRs was
observed to correlate with an increased risk of high self-association
of antibodies [86]. For instance, it has been shown that multiple
consecutive arginine residues in an antibody sequence can facilitate
nonspecific antibody interactions [86, 87]. On the other hand, also
highly hydrophobic CDRs have been reported to be involved in
aggregation, viscosity and poor specificity [9, 88–90].

Overall, while solubility and conformational stability may be
regarded as intrinsic properties of an antibody, colloidal stability
and viscosity directly depend on the antibody concentration in the
formulation under scrutiny. Besides concentration—surface hydro-
phobicity, charge heterogeneity, and net charge—are factors that
contribute to the colloidal stability of an antibody formulation [91–
94]. Controlling the colloidal stability is crucial in order to mitigate
antibody self-association and reduce viscosity and aggregation.
Approaches to confer antibodies with resistance toward self-associ-
ation include formulation optimization [85] and mutagenesis
[56–59].

3.5 Specificity A fundamental requirement for antibodies is the ability to specifi-
cally bind their targets while avoiding interactions with other mole-
cules [95, 96]. However, some antibodies have been reported to
nonspecifically interact with a variety of molecular targets besides
their intended one [97–100]. For example, antibodies generated by
immature B-lymphocytes tend to be less specific than those origi-
nating from mature ones [101, 102]. Similarly, antibodies derived
from synthetic libraries have sometimes been found to be more
problematic in the development phase than immune-system-
derived ones also because of poor specificity [8, 103–106]. For
example, phage-derived antibodies have been reported to often
feature solubility issues [103, 105, 106] and substantial nonspecific
interactions [104], while antibodies resulting from immunization
techniques are commonly more specific due to the selection carried
out in vivo by the immune system [106].
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Nonspecificity has been linked to poor solubility [96] and low
expression [96], but also to poor antibody pharmacokinetics,
including impaired bioavailability [99], faster clearance rates
[97, 107], and toxicity [108]. Therefore, the avoidance of nonspe-
cific interactions is a crucial parameter underpinning developability
potential.

3.6 Immunogenicity Immunogenicity depends on extrinsic factors including administra-
tion concentration, frequency of dosing, formulation, and patient
medical background, but also on sequence composition and several
biophysical properties [109]. For example, conformationally unsta-
ble, unfolded and aggregated antibodies can trigger an immuno-
genic response upon injection by eliciting a humoral or cell-
mediated immune response [64]. Aggregated antibodies are often
more immunogenic than their monomeric form mainly due to the
exposure of epitopes that mimic pathogenic patterns [64].

Another common source of immunogenicity is the exposure of
non-human (non-endogenous) sequence patterns. Mouse-derived
antibodies have been observed to harbor high immunogenicity
risks in humans, which have been ameliorated by using chimeric,
humanized or fully human antibodies [110]. Efforts to overcome
this limitation of antibodies obtained from animal immunization
include the development of transgenic mice that produce fully
human antibodies following immunization [111, 112], and of in
vitro display methods to screen fully human antibody libraries
[113–116].

Immunogenicity is commonly induced through the exposure
to T-helper cells of epitopes of non-human origin, or that are
usually buried in the protein structure but become surface exposed
in partially or fully unfolded species. Upon T-helper cell activation,
cytokine release initiates an immune response that leads to the
generation of B-cell-derived anti-drug antibodies [65]. Patients
may experience side-effects, which can range from local skin inflam-
mation at the injection site and fever, to acute anaphylaxis and
systemic inflammatory response syndrome, which may be fatal
[66]. Becoming immune to an antibody therapeutic can be a
major problem, when there are no other treatments available for
patients that are resistant to a given drug [43]. In rare cases,
patients can also develop immunity toward endogenous proteins
as reported for antibody-mediated pure red cell aplasia [117]. Over-
all, immunogenicity is an important property to determine the
clinical success of an antibody drug candidate.

3.7 Biochemical

and Biophysical

Properties are Closely

Interlinked

The balance between the unfolding and folding rates determines
conformational stability of antibodies. The folding process is typi-
cally a first-order reaction that depends on the formation of intra-
molecular interactions, and it is therefore concentration
independent [118]. In contrast, protein aggregation relies on
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intermolecular contacts, and therefore is a second or higher order
reaction, which is strongly dependent on protein concentration
[72, 119] (Fig. 2). A key driving force of folding is hydrophobicity,
which leads to the collapse of hydrophobic motifs in the sequence
forming the so-called folding nucleus, where they are no longer
exposed to the solvent [120, 121]. However, in fully or partly
unfolded states such motifs can remain solvent-exposed, and par-
ticularly in high-concentration formulations, where intermolecular
interactions become much more likely, they can readily trigger
aggregation instead of folding.

Therefore, conformational stability, colloidal stability, and sol-
ubility are closely intertwined in biopharmaceutical formulations.
The presence of partly of fully unfolded states significantly lowers
the free-energy barrier that determines colloidal stability and favors
the formation of partly unfolded oligomers and larger aggregates.
These misfolded aggregates are typically more stable and kinetically
trapped than folded oligomers, which can readily dissociate back to
the native state (Fig. 2). In turn, the fact that when conformational
stability is low, misfolded aggregates can readily form via partly
unfolded intermediates lowers the critical concentration of the
system, and hence the solubility. In other words, the concentration
needed for intermolecular interactions, which drive the formation
of aggregated states, to become dominant over intramolecular
interactions, which drive the refolding, is much lower for a poorly
stable antibody than for a highly stable one, as the presence of partly
or fully unfolded states lowers the free-energy barrier to reach the
aggregated states.

This complex picture describing the interplay among different
biophysical properties emerges from the fact that the fundamental
forces that drive folding, such as hydrophobic and polar interac-
tions, are the same ones that determine protein aggregation, as well
as antibody binding and specificity. It is therefore highly challeng-
ing to identify mutations that selectively affect one biophysical
property while leaving the others unaffected. Amino acid substitu-
tions that improve conformational stability have been observed to
negatively impact solubility, probably because increased hydropho-
bicity stabilizes the native state, but also facilitates self-assembly
[122]. Conversely, because increased conformational stability usu-
ally increases the free-energy barrier to reach the aggregated state,
solubility and conformational stability have often been reported to
correlate [123, 124]. Moreover, surface mutations that would in
principle improve solubility can sometimes cause an increase in
conformational dynamics leading to the transient exposure of oth-
erwise buried hydrophobic patches, which may actually elicit aggre-
gation [125–127]. In the case of antibodies, binding often requires
long and irregular CDRs, and the presence of solvent-exposed
hydrophobic residues, which may negatively impact both stability
and solubility [128–130].
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Regarding binding affinity and specificity, a recent analysis of
over 400 antibody–antigen complexes confirmed previous reports
that paratope residues including Tyr, Trp, Ser, Asn, Arg, and Gly
contribute substantially to the interactions between antibody and
antigen, thus driving binding affinity [131]. However, while bind-
ing affinity and specificity are typically correlated, the enrichment of
Trp, Arg, Gly, and Val has also been associated with the occurrence
of poor specificity [87, 132]. Interestingly, Tyr, Ser, and Trp are
prevalent in antigen-contacting residues in germline antibodies,
but not among mutations introduced by the somatic hypermuta-
tion mechanism carried out by the immune system, thus suggesting
a role of this process in suppressing nonspecific interactions
[104]. Generally speaking, complementary electrostatic interac-
tions and the formation of antibody–antigen hydrogen bonds
have been associated with the occurrence of specificity, while aro-
matic and hydrophobic interactions, mostly occurring with the
epitope main chain atoms and side-chain carbons, with binding
affinity [133].

Taken together, these apparently contrasting findings, and the
existence of many cases contradicting the expected average behav-
ior, show that it is very challenging to extrapolate universally appli-
cable rules to explain the molecular basis of the balance between
antibody biophysical properties. Overall, the determinants of sta-
bility, solubility, and interaction affinity and specificity appear to be
highly context-dependent, and rather specific to individual anti-
body–antigen complexes [6]. This fact greatly complicates the
experimental assessment of developability potential, as well as the
development of effective in silico tools to predict it or rationally
improve it with mutations.

4 Experimental Measurements of Developability Potential

Until recently, biophysical and biochemical properties of antibody
candidates have been assessed at the late stages of the preclinical
development process, as some assays can be highly material-
demanding and time-consuming [3]. Therefore, those lead candi-
dates with excellent biological activity but poor developability
would only be identified late in the pipeline, when a significant
amount of time and resources had already been deployed toward
their characterization [43]. The high attrition rate experienced
following this strategy has prompted and is still fuelling the devel-
opment of cost-effective, de-risking approaches to reduce late-stage
failures. In the last two decades, many novel in vitro assays have
been introduced that are readily applicable at the early stages of
antibody discovery campaigns. These assays require little material
and are typically relatively high throughput to enable the screening
of a large number of hits.
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In this section, we divide in vitro assays to measure develop-
ability potential into “biophysical characterization methods” and
“developability screening methods.” Biophysical characterization
methods are generally traditional biophysical assays that are low
throughput and resource-intensive, but directly measure biophysi-
cal properties of interest. These methods are typically used in the
late stages of preclinical development in the therapeutic antibody
pipeline (Fig. 1). Conversely, developability screening methods
usually require small amounts of material and have higher through-
put, but often measure parameters that are predictive of some
underlying biophysical property, and in some cases, especially
when the antibody purity is not very high, may have low reproduc-
ibility. Quite generally, the implementation of developability
screening assays in a pipeline enables to rule out potentially trou-
blesome antibody candidates already at the early stages of preclini-
cal development [3, 8, 10, 134–136].

4.1 Biophysical

Characterization

Assays

4.1.1 Assays Probing

Conformational Stability

Many biophysical methods are available to assess the conforma-
tional stability of proteins and antibodies. For example, the integ-
rity of the folded state can be assessed by looking at secondary
structure changes with far-UV circular dichroism (CD) spectros-
copy or Fourier transform infrared (FTIR) spectroscopy [137–
139], while tertiary structural changes may be assessed by near-
UV CD [140, 141]. These methods are quite material-demanding
and low throughput, as they require relatively large volumes
and/or high concentrations and need very high optical quality,
which challenges the use of multi-well microplate readers
[140, 141]. CD and other techniques like differential scanning
calorimetry (DSC) can be used to determine thermal stability.
With CD and DSC, the signal is monitored as a function of increas-
ing temperature, and the melting temperature Tm is defined as the
midpoint of the unfolding transition at which 50% of the antibody
is unfolded. The higher the Tm value, the higher the required
energy to unfold an antibody. Higher Tm values therefore mean
higher conformational stability, albeit the correlation is not perfect
when comparing widely different molecules [142, 143]. Common
methods to measure directly the conformational stability (ΔGu) rely
on isothermal chemical denaturation induced by urea or guanidine
hydrochloride (GuHCl). Either tryptophan fluorescence or CD
spectra are recorded at increasing amount of denaturant to monitor
the unfolding process, and a suitable model (e.g., two-state, three-
state) is fitted to the data to obtain an apparent free energy of
unfolding ΔGu [73].

4.1.2 Assays Probing

Colloidal Stability

Antibody–antibody interactions can be quantified by the
non-ideality parameters osmotic second virial coefficient B22 and
the diffusion interaction parameter kD. For example, B22 describes
the magnitude and type of self-interaction (attractive or repulsive)
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between two protein molecules in solution [144, 145] and can be
determined by analytical ultracentrifugation (AUC) [146] and
dynamic light scattering (DLS) [147]. The B22 value has been
shown to be predictive of protein solubility [148–150], aggrega-
tion, and viscosity issues at high concentrations [146]. B22 mea-
surements, however, remain material-demanding and time-
consuming [151]. kD determinations are usually conducted by
DLS. The measurements are based on the fact that the diffusion
of an antibody in solution is impacted by size and intermolecular
interactions between antibodies. The diffusion coefficient in
strongly interacting systems, such as high-concentration formula-
tions, is referred to as mutual diffusion coefficient (Dm) [82, 152,
153]. Dm is determined at increasing antibody concentrations
(typically from 1 to 20 mg/ml) and the kD values are obtained by
a linear fit of the measured Dm as a function of concentration
[151, 154]. A negative kD value translates to an increase in attrac-
tive intermolecular interactions, while a positive kD indicates repul-
sive protein–protein interactions [153, 155]. kD has been reported
to be predictive of solubility [76, 148] and viscosity issues of
antibodies in some cases [151, 155]. However, kD may be a poor
predictor of aggregation behavior in scenarios, where the hydro-
phobic interaction may become the governing force in solution and
outbalance electrostatic interactions [84].

4.1.3 Assays Probing

Aggregation

and Aggregation Propensity

Aggregates can arise from non-covalently, or more rarely covalently
(e.g., intermolecular disulfide bonds), linked species, and typically
vary widely in size and structural properties. Different types of
aggregates may be more or less kinetically trapped (see Fig. 2),
which means that aggregation may effectively become irreversible
on relevant timescales. Those aggregates that do not sediment
upon centrifugation or cannot be removed by filtration are often
termed soluble aggregates, albeit this definition is ultimately
dependent on time and speed of centrifugation or filter size,
whereas insoluble aggregates sediment and can be cleared from
the solution [156]. The exact mechanism of aggregation and the
type of aggregates formed in high-concentration formulations
strongly depends on the antibody, concentration, formulation con-
ditions (e.g., pH and excipients), and other external stresses (e.g.,
agitation, interphases, freeze–thaw cycles, and temperature) [157–
160]. Common methods to detect and quantify aggregates include
turbidity measurements (optical density at 340 nm), size exclusion
chromatography (SEC), AUC and DLS. Antibodies are often quite
stable towards aggregation, and therefore it typically takes a long
time (weeks to months) before significant amounts of aggregates
are formed. As aggregation reactions are highly concentration-
dependent, studies of antibody aggregation should ideally be per-
formed at formulation-relevant concentrations which are normally
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in the range of 50–150 mg/ml. Therefore, all of these methods are
material-demanding and time-consuming. Besides, some of these
methods, including SEC, involve the dilution of protein samples,
which prevents the detection of highly reversible aggregates
[78, 158, 161, 162].

Therapeutic antibody candidates are often subjected to stress
tests during formulation development in order to determine their
stability toward different stresses and to predict their propensity to
aggregate upon long-term storage [163–165]. Some of the most
common stress tests include thermal stress, mechanical stress, and
freeze–thaw cycles [165, 166]. For example, a few milligrams of
antibody material are often incubated at elevated temperatures
(e.g., 40 �C) for several weeks. Increasing temperature facilitates
conformational changes in the protein, such as local unfolding,
which may induce aggregation. Concomitantly, elevated tempera-
tures increase the diffusion of proteins in solution thus increasing
the rate of collisions, which ultimately leads to self-association,
aggregation and chemical degradation reactions
[164, 165]. Many studies have attempted to predict the shelf life
based on extrapolation of stability data obtained from elevated
temperature experiments to actual storage conditions (1–2 years
refrigerated). However, antibodies are complex and large pro-
teins—and so are their aggregation pathways. Different protein
conformations have been reported to be populated at different
temperatures, pH, and ionic strength conditions, which may lead
to different types of aggregation [167–169]. Ultimately, the aggre-
gation of multi-domain proteins like antibodies may not follow
simple kinetics over a wide temperature range but rather exhibit
non-Arrhenius behavior [164, 165, 168]. This means that the rate
constant of aggregation is non-linear with temperature, which has
been shown for various antibodies [170]. Also, the melting tem-
perature (Tm) has been used in several studies to predict long-term
storage of therapeutic proteins. Some studies suggest a correlation
between Tm and stability upon storage [165, 171]. However, Tm

measurements may not be predictive of long-term storage in cases
where the predominant aggregation process or the rate-limiting
step are not related to partial or full unfolding of a protein but
rather on the formation of native oligomers [165].

4.1.4 Assays Probing

Solubility

Solubility may be experimentally determined as the maximum con-
centration of antibody remaining in solution without forming pre-
cipitates, gels, crystals, or soluble aggregates, for example following
harsh centrifugation (e.g., 30,000 � g for 30 min) or filtration
[156]. Nonetheless, as discussed in Subheading 3.7, the solubility
of complex macromolecules is ultimately poorly defined and there-
fore not measurable as an absolute quantity. For example, in centri-
fugation assays performed at increasing total concentration, the
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supernatant concentration often does not reach a clear plateau
when plotted as a function of the total concentration, but rather
gradually deviates from the unity line [172]. In addition to these
intrinsic challenges, solubility measurements are also impractical,
because of the need of large amounts of purified protein (tens to
hundreds of milligrams), and of experimental difficulties resulting
from the high heterogeneity of the aggregated states [78]. None-
theless, ultrafiltration or ultracentrifugation assays are commonly
employed to rank different antibodies or to compare different
formulations in the late preclinical development stage. In
up-concentration experiments, solubility is measured as the maxi-
mal protein concentration that can be achieved in ultrafiltration
devices with a molecular cut-off filter. Disadvantages of ultrafiltra-
tion are high material consumption, adsorption losses and shear-
induced degradation. Another issue is that up-concentrated protein
solutions can exhibit high viscosity. Viscosity can become problem-
atic when membrane pore clogging occurs, which can limit reach-
ing high concentration. Gel formation can also impede solubility
measurements [18, 78]. Another method to measure solubility is
by addition of lyophilized protein to a solution until it becomes
saturated and its solubility limit is reached [75]. Insoluble protein is
removed by centrifugation or filtration [173], and the maximum
protein concentration in the soluble supernatant measured
[156]. Alternatively, the apparent protein solubility can be deter-
mined by protein precipitation assays, which rely on additives like
ammonium sulfate or polyethylene glycol (PEG) [25, 79, 80,
174]. These assays have significantly lower material requirement
than the aforementioned methods (but still require a few milli-
grams), and are more amenable to high-throughput automation
[80, 175]. There also exist several reports which suggest that
measurement of colloidal stability (described previously) can give
an indirect measure of solubility and be used for ranking of mole-
cules [148–150].

4.1.5 Assays Probing

Viscosity

Viscosity is highly relevant for drug manufacture and administra-
tion, since highly concentrated antibody solutions are typically
pushed through narrow tubing and needles as previously discussed.
In the pharmaceutical setting, dynamic viscosity is the most com-
mon parameter to measure solution viscosity, as it reflects directly
how a solution resists a flow when an external force is applied.
Dynamic viscosity increases with protein concentration, and it is
governed by the volume exclusion effect of antibodies and formu-
lation excipients [176, 177].

The most common method to measure viscosity is the cone-
and- plate rheology method, which enables high accuracy measure-
ments [9, 151, 178, 179]. Viscosity measurements should be car-
ried out at varying antibody concentrations [9, 151], up to ideally
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150 mg/ml, in order to enable reliable ranking of different anti-
bodies and formulations at pharmaceutically relevant conditions
[9, 151], which makes these measurements very resource-intensive.
An expedient that has been proposed in order to lower material
requirements is to exploit the strong temperature dependence of
viscosity measurements. Geoghegan et al. [178] have demonstrated
that robust viscosity ranking of different antibodies at 70 mg/ml
can be obtained by simply lowering the measurement temperature
to 4 �C.

Microfluidic capillary viscometers and microrheology technol-
ogies (reviewed in Ref. 180) also represent low-throughput meth-
ods, but may require less material than cone-and-plate rheology
techniques. Another way to measure viscosity of antibody formula-
tions is to use DLS as an indirect method. Here, polystyrene beads
are added to antibody solutions and from the diffusion coefficient
of the beads, which are much larger than antibodies, the solution
viscosity can be calculated [181–183]. Due to the need of high
amounts of antibody material and of the labor-intensive process of
protein concentration, predictive methods are very often used to
evaluate whether a molecule may be associated with viscosity risks.
For example, the determination of protein–protein interactions
using e.g., the diffusion interaction parameter (kD) described pre-
viously is commonly used as a predictive proxy for viscosity [184].

4.2 Developability

Screening Assays

Several in vitro methods are now available to aid the prediction of
the likelihood of clinical success (i.e., developability) of drug can-
didates at the early stages. These methods indirectly measure bio-
physical properties using minute amounts of material (usually a few
μg), run in little time (few minutes to a couple of hours), and are
often high throughput. Therefore, their implementation in the
pipeline holds the promise of streamlining the selection of the
fittest from the very beginning of a drug discovery campaign
[3, 8, 10, 134–136]. However, these methods most often do not
directly measure solubility, aggregation, and viscosity, but rather
determine surrogate parameters reported to be predictive of these
properties [3, 8, 135]. Antibody candidates are then ranked accord-
ing to these parameters, which can be helpful to exclude biophysi-
cally challenging candidates from further characterization.

Overall, early developability assessments aim to bridge the gap
between drug discovery and drug development, which are tradi-
tionally not fully connected processes. For example, manufactur-
ability and safety constraints are per se not considered in the
discovery process, while these are of utmost importance for devel-
opment and progression into clinical trials. Currently, there is no
single in vitro assay that can fully predict the developability poten-
tial of an antibody candidate, as developability is a broad concept
that encompasses several interlinked biophysical and biochemical
properties. Therefore, at present only the combination of many
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methods, whose implementation may significantly complicate the
pipeline, can provide valuable comprehensive estimates of the
developability potential of a drug candidate [8, 15].

4.2.1 High-Throughput,

Low-Material Stability

Measurements

As protein folding depends only on intramolecular interactions,
and it is therefore concentration independent, protein stability is
perhaps the easiest biophysical property to measure in highly quan-
titative ways using very little material. Measurements of thermal
stability only require monitoring the unfolding of a sample with
increasing temperature, which can be done using small sample
volumes and low protein concentrations. High-throughput meth-
ods include the protein-thermal shift assay, which can be imple-
mented using small volumes in PCR microplates by exploiting
fluorescent dyes whose brightness increases upon binding to
exposed hydrophobic patches [185]. Another popular assay is dif-
ferential scanning fluorimetry (DSF), which measures the change of
tryptophan and tyrosine intrinsic fluorescence under a temperature
gradient and determines the Tm of the antibody under scrutiny.
Such methods require very low amounts of protein and are highly
applicable for high-throughput screening [186].

4.2.2 Assays Probing

for Nonspecific Interactions

Poor specificity, or generic stickiness, has been linked to off-target
effects and consequently to poor antibody pharmacokinetics, as
well as to poor solubility and high aggregation propensity [97–
100]. Quantifying specificity is challenging due to the high number
of possible off-targets and the wide range of affinity values. At
present, specificity can be determined by assays that measure anti-
body interaction with selected surfaces and biomolecules, including
proteins and DNA [96, 97, 107, 187, 188].

Cross-interaction chromatography (CIC [8, 187]), and stand-
up monolayer adsorption chromatography (SMAC [188]) are
widely used chromatographic methods to assess antibody specific-
ity. With CIC, specificity is measured by coupling polyclonal anti-
bodies from human serum onto a column. Increased retention
times of mAb candidates are indicative of interactions with such
antibodies and therefore of low specificity. Correlations of CIC
readouts have been reported with solubility measurements [187],
and in vivo clearance rates in mice [189]. In contrast, SMAC probes
specificity by using a non-biological surface (Zenix™ column).
SMAC retention times have been reported to correlate with colloi-
dal stability, and with CIC itself [188]. Overall, these chro-
matographic methods typically require little material and are
amenable to automation to run multiple samples. Nonetheless, as
samples still run one at a time through the column, and cleaning
steps are often required among samples, the throughput remains
quite low. Hence, these methods are not ideal to process the large
numbers of hits commonly generated during antibody library pan-
ning, which often are expressed transiently in microplates and

Assessment of Therapeutic Antibody Developability by Combinations. . . 77



purified to relatively low purity [190]. With higher throughput are
enzyme-linked immunosorbent assay (ELISA) formats, which are
carried out in multi-well plates. The baculovirus particle
(BV) ELISA detects non-specificity of protein therapeutics using a
complex mixture of various biomolecules. BV particles are com-
posed of phospholipids, carbohydrates, nucleic acids, glycoproteins
and other molecules that are immobilized as antigens on an ELISA
plate. It was found that antibodies, rapidly clearing in cynomolgus
monkeys and humans, bind nonspecifically in this assay
[97]. Another ELISA-based method has been developed that uses
insulin, dsDNA, and ssDNA, and was initially employed to study
self-reactivity and poly-specificity of natural antibody repertoires
over the course of B-cell maturation [101]. This method has been
adapted in the context of pharmacokinetic risk screening.
Non-specific binding of antibodies to negatively charged substrates
such as insulin or DNA resulted in faster clearance in mice
[107]. Fluorescence-activated cell sorting (FACS) has also been
employed to assess the specificity of antibodies [96, 191]. A soluble
biotinylated membrane protein reagent termed poly-specificity
reagent (PSR) is prepared from homogenized mammalian cells
using a mild surfactant. Binding of PSR to antibody libraries dis-
played on the surface of yeast is assessed by FACS, which allows
detecting low binding variants. A correlation with CIC and BV
ELISA has been established, suggesting that this assay may also
be correlated with antibody clearance rates [96, 191]. One study,
which compared the PSR with CIC on over 400 mAbs, observed
that PSR may be more sensitive to assess specificity [191]. Protein
arrays and biochips represent another type of non-specificity
screening tools in which different sets of proteins are spotted
onto an array, which can then be probed with candidate therapeutic
antibodies. Such arrays can contain many different proteins immo-
bilized on a nitrocellulose-coated glass slide, and off-target effects
are most commonly quantified with fluorescence or chemilumines-
cence readouts [192–195]. At variance with other methods, pro-
tein arrays not only provide information about the degree of
specificity of the antibody under scrutiny, but also about which
and how many other targets have been identified.

4.2.3 Assays Probing

Self-Association

and Aggregation Propensity

High self-association propensity of biopharmaceutics has been
reported to correlate with low solubility and high viscosity
[77, 85, 94, 151, 191, 196, 197], as well as with unfavorable
in vivo pharmacokinetics [9, 198]. Self-interaction chromatogra-
phy (SIC) measures the retention time of an antibody as it flows
across a column conjugated with the same antibody. Therefore,
longer retention times result from stronger interactions of the
antibody with itself, and usually correlate with lower solubility
[199]. The disadvantages of this technique include the need to
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set up a separate column for each antibody of interest, and the
relatively high amount of material required for column coupling,
which make this technique relatively low throughput [200–
202]. Another assay probing for self-association is clone self-
interaction bio-layer interferometry [203]. Here, the Fc region of
the antibody of interest is immobilized on a biosensor, and its
interaction with the same antibody in solution is measured, which
requires very little material [203]. The method has been reported
to correlate with CIC and SIC [203], albeit the use of detergent is
often needed to suppress nonspecific interactions with the biosen-
sor itself, which may limit the sensitivity of the assay. Affinity-
capture self-interaction nanoparticle spectroscopy (AC-SINS) is
another commonly used method to detect self-association
[191, 196]. In this assay, gold nanoparticles are coated with anti-
Fc mAbs which capture the antibody candidate of interest. Self-
association of the target antibody results in reduced inter-particle
distances, which can be quantified via the change in the wavelength
of maximal absorbance (plasmon wavelength) [191]. AC-SINS has
been reported to predict viscosity, solubility issues [100, 178, 190,
204], colloidal stability [86, 191], CIC [191] and in vivo clearance
[107]. Besides low protein material consumption (tens of μg/ml),
AC-SINS is in principle compatible directly with cell-culture super-
natants, making it a promising tool for early stage screenings even
before purification [204]. In a recent work, however, no correlation
was observed between AC-SINS carried out on supernatants and
more resource-intensive measurements of self-interaction (kD) and
relative solubility (PEG precipitation) carried out on the
corresponding purified antibodies [205]. Other possible caveats
of this approach include the fact that mAb binding to
nanoparticle-conjugated antibodies may impact the observed self-
association, and that the nanoparticles may be prone to aggregate
by themselves under certain conditions [204]. Finally, specific
physicochemical properties, such as solvent-exposed hydrophobic
patches, have been linked to self-association. Hydrophobic interac-
tion chromatography (HIC) is used to characterize the hydropho-
bicity of folded proteins [26, 206]. Estimates of the apparent
hydrophobicity have been shown to correlate in some cases with
aggregation [8, 88], viscosity and impaired in vivo clearance
[9]. SGAC-SINS evaluates self-association at high ammonium sul-
fate concentrations using the AC-SINS method [190]. Measure-
ments of protein self-association at high ionic strength were
correlated to HIC data. The major advantage of this method is
the high throughput compared to traditional HIC [190].

4.3 Discussion

on Developability

Screening Assays

Developability screening assays offer the opportunity to readily
measure parameters that are important to determine crucial proper-
ties of antibody drug candidates using small amounts of material
and often in a high-throughput way. Nonetheless, no single assay
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has been found to be fully predictive of long-term storage, pharma-
cokinetics, and in vivo specificity [8, 207]. Therefore, many devel-
opability assays must be used in combination to evaluate the
developability potential of antibody candidates. Holistic
approaches [7, 8] are based on the combination of in vitro assays
to assess the developability potential of antibodies in a thorough
manner. However, implementing multiple assays at the early stages
of an antibody discovery pipeline makes developability assessment
highly resource-intensive and time-consuming.

Furthermore, there are no well-established guidelines for the
efficient selection of biotherapeutic molecules with desired features
from developability readouts. While the implementation of a set of
thresholds beyond which an antibody candidate should be dis-
carded has been suggested [8], varying formulation conditions
can largely determine whether a molecule is above or below the
threshold [207], and formulation screening with a dozen assays on
many candidates remains highly unpractical.

Another factor that challenges developability assessment is the
quality and amount of antibody material available at the early stages
of preclinical development. The first hits are often expressed in
multi-well plates in minute amounts and relatively low purity,
which can induce large errors and issues of reproducibility in devel-
opability measurements [7, 8]. Likewise, some assays (e.g., CIC)
rely on polyclonal antibodies, which make it difficult to reproduce
experiments [208], and nearly all assays that probe nonspecific
interactions and self-association require the presence of surfaces.
The presence of surfaces creates interfaces that may introduce
unwanted artifacts resulting from the adsorption of some mole-
cules, and it results in limited capacity to explore different formula-
tions, as detergents or high salt may be needed to prevent
nonspecific antibody–surface interactions [209]. Some surfaces
(e.g., Zenix column for SMAC assay) are also proprietary, thus
making it difficult to rationalize experiments.

Finally, there is a lack of developability assays that directly and
quantitatively probe for aggregation. For example, Jain et al. [8]
performed accelerated temperature studies where they incubated
1 mg/ml at 40 �C for 30 days and took time points which they
consequently analyzed by SEC. Their analysis showed the outcome
of this experiment did not correlate with any of the other develop-
ability assays. As previously discussed, the aggregation of large,
complex proteins does not necessarily show a linear temperature
dependence, and thus thermally accelerated aggregation may not
be an optimal way to predict aggregation propensity at storage
condition. Similarly, a recent work found that no single develop-
ability readout correlates with protein aggregation during storage,
and suggests the implementation of risk scores based on multiple
experiments in different solution conditions [207].
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4.4 Microfluidics

for Developability

Assessment

The simultaneous determination of multiple biophysical para-
meters in one assay at high throughput and low-material consump-
tion would greatly facilitate in vitro developability assessments.
Toward this goal, promising advances have been recently made
using microfluidic approaches [210–212], which offer little mate-
rial consumption, fast experimental run-time, and limited dilution
of the sample during analysis. In addition, surface chemistries are
highly tuneable in these devices, enabling for example the study of
the effects of interfaces on protein stability. Therefore, advances in
microfluidics may open up the exciting possibility to screen large
numbers of drug candidates under a wide range of conditions at the
early stages of antibody characterization using negligible amounts
[210, 211]. Several successful applications of microfluidic devices
for the characterization of protein sizing, separation of impurities,
viscosity, and thermal stability have already been reported
[210, 211]. These devices can implement both label-mediated
(e.g., fluorescent dyes or tracers) or label-free (e.g., intrinsic fluo-
rescence) strategies to detect proteins in solution.

In a microfluidic approach, for example, one can assess the
extent of antibody oligomerization by sizing antibody species,
including monomers and oligomer assemblies, according to their
hydrodynamic radii by determining their diffusion coefficients in
laminar flow. The challenge of sizing heterogeneous protein solu-
tions has been overcome by acquiring multiple diffusion profiles in
space and time [211]. A microfluidic device has indeed been devel-
oped to size antibodies even in high-concentration formulations
(150 mg/ml), thus opening a complementary approach to meth-
ods such as SEC and DLS [183]. Devices used for sizing may also
be exploited for determining intermolecular interactions including
aggregation, phase separation and crystallization [210, 212]. In
perspective, the translation of these findings to an industrial scale
will require to address challenges such as automation and repro-
ducibility of produced devices [211]. Tackling these challenges may
result in powerful novel tools to assess the developability of thera-
peutic proteins.

5 In Silico Predictions of Developability

The development of in silico predictors to screen for the develop-
ability potential of biotherapeutics is a rapidly growing field.
Computational approaches hold the promise of quickly and accu-
rately screening thousands of sequences almost instantaneously,
and, crucially, without material requirements [88, 89, 128,
213]. Moreover, some of these tools enable the identification of
potential liabilities arising from specific sequence patterns within
lead antibody candidates, thereby greatly facilitating the rational
engineering toward improved developability [13, 15, 172].
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Although the potential of computational approaches to replace
resource-intensive experiments has been recognized decades ago, it
is only in recent years that these methods have started to become
sufficiently accurate and reliable to be competitive with experimen-
tal approaches in some practical applications [3, 88, 89, 128, 172,
213–215]. To date, in silico tools have been successfully applied to
several problems, including the screening of biopharmaceuticals for
their aggregation propensity [13, 89, 213] or developability poten-
tial [7, 128, 216], enhancing the solubility of proteins [13, 172,
215, 217] and investigating the determinants of solubility and
aggregation in whole proteomes [63, 218, 219]. A list of available
predictors of aggregation propensity, solubility, or more generally
developability potential is provided in Table 2 with a short descrip-
tion of each method and relevant references. These methods are
classified into “Amino acid composition-based algorithms,” “Slid-
ing window/pattern-based algorithms,” “Consensus predictors,”
or “Tertiary/quaternary structure-based algorithms.”

Amino acid composition-based algorithms. The methods use the
frequency of individual amino acid and/or of short peptide motifs
(typically di- or tri-peptides) to calculate an overall solubility or
aggregation propensity score [213, 218–221, 225, 228]. Some of
these algorithms have been shown to perform well in predicting the
aggregation propensity of short disordered peptides and their
mutational variants [251, 252]. Short peptides are highly dynamic
and populate structural ensembles, where most residues are close to
each other in at least some conformations. Therefore, the solubility
of short peptides may be more directly dependent on global bio-
physical properties of the sequence and less on the presence of
specific sequence patterns or structured motifs [251, 252]. How-
ever, because of its construction, this score is often insensitive to the
order of the residues in the sequence, and thus residue permuta-
tions may not affect the outcome of the predictions. In addition,
some of these algorithms, rather than resulting in a numerical score
that may be quantitatively compared with measurements of aggre-
gation rates or of relative solubility, provide a binary classification
(e.g., soluble/insoluble), which is primarily useful to predict the
likelihood of successful recombinant expression [218, 253].

Sliding window/pattern-based algorithms. These techniques
typically employ a more sophisticated framework than amino acid
composition ones, so that the order and location of the individual
amino acids are important [172, 222, 227, 230–237, 240,
243]. These algorithms build on the realization that the presence
of a single aggregation-promoting sequence pattern can readily
lead to the aggregation of otherwise soluble polypeptide sequences.
This observation was historically made for amyloidogenic proteins
[254, 255], but has been shown to hold true also for the aggrega-
tion of biopharmaceutical antibodies [216, 256]. The vast majority
of these algorithms yield a sequence profile, which is most typically
one number per residue that reflects the contribution of each
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Table 2
Available in silico tools to predict or design the developability of biotherapeutics. The central column
provides a concise description of each method. Methods are divided into categories and sorted
according to the date of first publication

Method [Ref]
Year Approach Type of predictor

Peptide and protein solubility

SolPro [220]
2009

A two-stage support vector machine (SVM) to
predict the propensity of a protein to be soluble
upon overexpression

Amino acid composition-
based algorithms

Machine learning

SCM [221]
2012

Solubility predictions based on a dipeptide
solubility scoring matrix

Amino acid composition-
based algorithms

Machine learning

PROSO II [218]
2012

Protein solubility predictor using a two-layer
architecture of SVM and naive Bayes classifiers

Amino acid composition-
based algorithms

Machine learning

CCSOL [219]
2012

SVM trained to discriminate between soluble and
insoluble protein expression in E. coli. Training
parameters include coil/disorder,
hydrophobicity, hydrophilicity, β-sheet and
α-helix propensities

Amino acid composition-
based algorithms

Machine learning

ESPRESSO [222]
2013

Binary classification of sequences using predicted
secondary structural properties and sequence
pattern-based methods to predict protein
solubility and expression in E. coli

Sliding window/pattern-
based algorithms

Chan-Warwicker
[223]

2013

Solubility predictor using a correlation between
positively charged surface patches and insoluble
expression, particularly when the patch is
enriched in arginine relative to lysine

Tertiary/quaternary
structure-based
algorithms

Obrezanova et al.
[213]

2015

Prediction of intrinsic aggregation propensities of
antibodies by using statistical modelling and
machine learning techniques using sequence
input. The tool is constructed and validated on
over 500 sequences

Amino acid composition-
based algorithms

Machine learning

Intrinsic CamSol
method [172]

2015

This algorithm uses a sliding window average of
solubility propensity scores that are adjusted for
physicochemical properties, gatekeepers and
alternating patterns of hydrophobic and
hydrophilic residues

Sliding window/pattern-
based algorithms

Structurally corrected
CamSol method
[172]

2015

Sequence-based solubility predictions (247)
projected onto a 3D structure and adjusted for
solvent exposure and the influence of other
residues within an 8 Å radius

Tertiary/quaternary
structure-based
algorithms

(continued)
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Table 2
(continued)

Method [Ref]
Year Approach Type of predictor

Schaller-Middleberg
[224] 2015

Prediction of soluble protein expression using
parameters obtained from high-temperature
protein unfolding molecular dynamics
simulations in an SVM classifier

Tertiary/quaternary
structure-based
algorithms

PON-Sol [225]
2016

Prediction of the effects of amino acid substitutions
on solubility using a three-class (solubility
increasing, decreasing, or unchanged), binary
random forest classifier

Amino acid composition-
based algorithms

Machine learning

Solubis [12]
2016

An automated pipeline to identify mutations that
reduce protein aggregation, while retaining
conformational stability. Uses TANGO and
FoldX

Tertiary/quaternary
structure-based
algorithms

SODA [226]
2017

Predicts changes in protein solubility upon
mutation based on several physicochemical
properties of the protein and intrinsic disorder.
Uses the PASTA algorithm

Sliding window/pattern-
based algorithms

And also tertiary/
quaternary structure-
based algorithms

Protein-Sol [227]
2017

Data from E. coli protein solubility system used.
35 sequence-based properties are considered and
two other properties (fold propensity and net
segment charge) are profiled in a sliding window
fashion

Sliding window/pattern-
based algorithms

Aggregation propensity

Chiti-Dobson [228]
2003

The aggregation rates of protein mutants are
predicted by the weighted sum of change in
hydrophobicity, secondary structure propensity,
and net charge

Amino acid composition-
based algorithms

Dubay et al. [229]
2004

The Chiti-Dobson approach is extended to predict
the aggregation rates of whole proteins

Amino acid profile-based
algorithm

TANGO [230]
2004

Sequence-based protein aggregation predictions
based on physicochemical parameters involved in
β-sheet structure

Sliding window/pattern-
based algorithms

AGGRESCAN [231]
2007

Sequence-based evaluation of aggregation hotspots
in polypeptide chains. It uses a sliding window
average of aggregation propensity scores for
amino acids derived from measurements of
intracellular aggregation by Aβ42 mutants

Sliding window/pattern-
based algorithms

Zyggregator [232]
2008

Based on DuBay et al. 2004, uses a linear
combination of several physicochemical
properties, which are adjusted for gatekeeping
residues and alternating patterns of hydrophobic
and hydrophilic residues

Sliding window/pattern-
based algorithms

(continued)
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Table 2
(continued)

Method [Ref]
Year Approach Type of predictor

SAP [13, 88]
2009

Spatial aggregation propensity (SAP) identifies
hotspots for aggregation based on dynamically
exposed hydrophobic surface patches which are
determined by structural analysis and short MD
simulations

Tertiary/quaternary
structure-based
algorithms

FoldAmyloid [233]
2010

Predicts positions of amylogenic regions in proteins
by using sliding window average of amino acid
packing density and hydrogen bond probability
scores

Sliding window/pattern-
based algorithms

3D Profile [234]
ZipperDB [235]
2006, 2010

Calculates fibrillogenic propensities of proteins
using a structure-based algorithm. This
algorithm assesses the compatibility of sequence
segments with the conformation adopted by the
NNQQNY hexapeptide in cross-β fibrils

Sliding window/pattern-
based algorithms

Waltz [236]
2010

Allows distinction between amyloid sequences and
amorphous β-sheet aggregates and identification
of amyloid-forming regions in functional
amyloids. It uses a position-specific scoring
matrix derived from amyloidogenic hexapeptides
combined with physicochemical properties, and
structural modelling using amyloid backbone
structures

Sliding window/pattern-
based algorithms

AmyloidMutants
[237]

2011

Combination of statistical mechanics approach and
super-secondary structure prediction that
quantifies the effects of sequence mutation on
fibril conformation and stability

Sliding window/pattern-
based algorithms

Amylpred2 [238]
2013

A consensus algorithm that combines eleven
aggregation predictors (including waltz, Tango,
AGGRESCAN, and AmyloidMutants) that
identify aggregation-prone stretches in proteins
and compare their results

Consensus predictor

MetAmyl [239]
2013

A consensus algorithm that combines eleven
aggregation predictors that identify amyloid
aggregation hot spots based on a logistic
regression model and provides weighted
predictions

Consensus predictor

PASTA [240, 241]
2006

PASTA 2.0 [242]
2014

Predicts amyloid fibril regions from protein
sequences by statistical analysis of residue pairings
between adjacent β-strands. The extension of
PASTA includes new features, e.g., comparison of
aggregation propensity of wild-type and mutated
proteins and is validated on a larger dataset of
globular protein domains

Sliding window/pattern-
based algorithms

Machine learning (only for
structural prediction)

(continued)
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Table 2
(continued)

Method [Ref]
Year Approach Type of predictor

FISH Amyloid [243]
2014

Machine learning method for the identification of
amyloidogenic segments in amino acid sequences
using a discriminative pattern of site-specific
co-occurrences of residue pairs in known
amyloidogenic hexapeptides

Sliding window/pattern-
based algorithms

AGGRESCAN [215]
2015

AGGRESCAN sequence-based predictions
projected onto a 3D structure and adjusted for
solvent exposure and the influence of other
residues within a 10 A radius; optional simulation
of dynamic exposure using CABS-flex

Tertiary/quaternary
structure-based
algorithms

Aggrescan3D 2.0
[244]

2019

Extension of AGGRESCAN3D 2015 with three
main differences: (1) protein flexibility
simulations using new CABS-flex standalone
package. (2) protein stability calculations using
the FoldX force field, to account for the impact of
amino acid mutations on the overall
conformational stability. (3) Option that suggests
mutations with optimized solubility

Tertiary/quaternary
structure-based
algorithms

Viscosity

Sharma et al., [9]
2014

Combines sequence-based and molecular dynamics
simulations (Fv domain) to predict viscosity
(experimental dataset of 14 mAbs), chemical
degradation (22 mAbs) and fast in vivo clearance
(61 mAbs). Sequence-based parameters are net
charge at given pH, charge symmetry and
hydrophobicity index

Tertiary/quaternary
structure-based
algorithms

Argawal et al., [245]
2015

Phenomenological, electrostatics-based viscosity
predictor. It determines the spatial summation of
residue charge of surface-exposed residues of the
Fv domain of antibodies

Tertiary/quaternary
structure-based
algorithms

Tomar et al. [246]
2017

Predicts concentration-dependent viscosity
behaviors of mAbs using sequence-structural
attributes, parameters were fitted on
experimental data of 16 mAbs

Tertiary/quaternary
structure-based
algorithms

Immunogenicity

EpiMatrix [247]
2002

T-cell epitope predictor based on allotype-specific
HLA-associated peptides (MHC ligands) derived
from 133 proteins

Sliding window/pattern-
based algorithms

SEPIa [248]
2017

Sequence-based B-cell epitope predictor based on
13 parameters and two different classifiers

Sliding window/pattern-
based algorithms

(continued)
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sequence region to the biophysical property that the algorithm
predicts (e.g., solubility, aggregation propensity, amyloidogenicity,
etc.), and several also calculate an overall sequence score. An overall
score for the whole sequence may be used to compare different
variants, as it enables to readily rank sequences according to the
predicted biophysical property [128, 253]. Sliding window/pat-
tern-based methods have been reported to base their predictions
for example on combinations of physicochemical properties of
amino acids (e.g., hydrophobicity, charge, and secondary structure
propensity), statistical analysis of residue pairings between adjacent
β-strands in known structures, and/or patterns of residue distribu-
tion of amyloid hexapeptides [253].

Table 2
(continued)

Method [Ref]
Year Approach Type of predictor

Developability predictors that consider more than one biophysical propensity

SAP DI [89]
2012

Uses SAP in combination with the antibody’s net
charge of the full structure to determine a
developability index (DI) of antibody candidates.
The algorithm was validated on a set of 12 mAbs,
which were subjected to accelerated aggregation
assays at 2 different temperatures

Tertiary/quaternary
structure-based
algorithms

AGGRESCAN3D +
FoldX [249]

2018

Updated version of the aggregation predictor AG
GRESCAN3D. Calculates the stability of protein
of interest using FoldX and reports energy
difference of wild-type and mutants in kcal/mol

Tertiary/quaternary
structure-based
algorithms

Intrinsic CamSol
method [172]

2018

The sequence-based solubility predictor was shown
to correlate with a set of experimental
developability assays probing for nonspecificity
for a library of 17 mAbs

Sliding window/pattern-
based algorithms

Therapeutic Antibody
Profiler (TAP) [10]

2019

Developability predictor (of primarily expression or
aggregation issues) that builds homology models
of variable domain sequences first and then tests
them against five guidelines: CDR total length,
surface hydrophobicity, positive charge and
negative charge in the CDRs, and asymmetry in
the net heavy- and light-chain surface charges.
The predictor was validated on 242 post-phase-I
antibody therapeutics

Tertiary/quaternary
structure-based
algorithms

Protein-Sol
developability
extension [250]

2019

Structure-based extension of the solubility
predictor Protein-Sol that looks at
hydrophobicity and charge patches on the
protein surface

pH and ionic strength variation can be taken into
account

Tertiary/quaternary
structure-based
algorithms
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Consensus algorithms. These methods run a number of different
methods in order to compute a consensus prediction based on the
outcome of each individual algorithm. The rationale behind the
development of consensus methods is that, as the algorithms in
Table 2 consider different types of protein aggregation (e.g., amy-
loid propensity, amorphous aggregation, etc.) and typically per-
form best on different protein or peptide classes, a combination
of their outputs might minimize method-associated biases toward
the overprediction of certain aggregation behavior.

Tertiary/quaternary structure-based algorithms. These algo-
rithms are based on the knowledge of the sequence as well as its
specific native three-dimensional arrangement. These predictors are
often employed to detect surface-exposed patches that might
impact the biophysical properties of antibodies. For example,
hydrophobic patches (e.g., SAP [13, 88]), aggregation-inferring
patches (e.g., AGGRESCAN3D [215]) and patches of poor solu-
bility (e.g., CamSol structurally corrected [172]) can be identified
with these predictors. The identification of these liabilities can be
used to guide protein engineering efforts of lead candidates with
promising biological activity but otherwise problematic biophysical
properties. Compared to random mutagenesis and screening, these
predictors offer a rational, safer, and usually faster route to optimize
developability potential. Some of these methods implement addi-
tionally short local molecular dynamics simulations to take into
account the transient exposure of otherwise buried patterns that
may trigger aggregation [13, 88, 215]. However, because of chal-
lenges in conformational sampling and force field accuracy, some-
times the implementation of these simulations may not contribute
significant performance improvements [89].

5.1 Machine

Learning-Based

Algorithms

Some of the algorithms listed in Table 2 rely on a machine learning
architecture to produce a developability prediction. Machine
learning, sometimes referred to as artificial intelligence, refers to a
broad class of computer algorithms that can have widely different
architectures, but have in common the ability to learn from data
without being explicitly programmed. The learning or training
phase typically consists in the optimization of a large number of
free parameters, such as connection weights in the case of neural
network architectures. These parameters are optimized in such a
way that from known inputs (e.g., protein sequences) the algorithm
reproduces the corresponding known outputs (e.g., the measured
developability parameter). When trained on a large enough amount
of diverse data, these algorithms have the ability to generalize that is
to correctly predict the outputs of never-seen-before inputs. The
growing amount of available data, including measurements of bio-
physical properties, is increasingly enabling applications of machine
learning algorithms to address biological problems. Although
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machine learning-based methods lack the physical transparency of
other approaches rooted on physicochemical principles or physical
laws, their frank pragmatism can be remarkably successful.

However, as the number of free parameters often ranges in the
thousands, these algorithms require a large number of experimental
data points for a reliable training. As discussed above, properties
like solubility and aggregation propensity remain very challenging
to measure accurately, and measurements are typically not compa-
rable across different experimental setups or conditions. This fact
poses severe limitations to the current applicability of machine
learning algorithms for the prediction of solubility or aggregation
propensity, as it is challenging to compile large enough experimen-
tal datasets that can be correctly compared with each other. Most
typically, algorithms are trained and tested on one or few datasets of
experimental measurements, employing validation procedures such
as ten-fold-cross-validation, which ensure that a subset of
sequences diverse enough from those used for parameter optimiza-
tion (i.e., the training) is kept aside to validate the performance. A
common issue in machine learning is overfitting, whereby the
trained algorithm, rather than capturing the biophysical properties
underlying the data, maps mathematically inputs and outputs with
limited ability of generalizing. Cross-validation approaches are
common ways to avoid overfitting, as overfitting characteristically
results in very high performance on the data used for training, but
lower performance on those set aside for testing. Nonetheless, the
measurements employed in training and testing are often of the
same kind andmay be affected by the same errors, which sometimes
are systematic and dependent on the employed experimental assay
and condition. Besides, some parameters that define the architec-
ture of the machine learning algorithm (e.g., number of hidden
neurons, learning rate, etc.) are in practice optimized on the
sequences in the validation dataset. Taken together, all of these
facts, and first and foremost the current unavailability of large
numbers of high quality, quantitative measurements of solubility
or aggregation taken under identical conditions for diverse antibo-
dies and proteins, limit the successful application of machine
learning approaches for developability prediction. This situation
may change in the near future as the throughput and accuracy of
available experimental assays increases, which may ultimately enable
to compile large datasets of highly accurate measurements for
diverse proteins taken at the same experimental conditions.

5.2 Structure-Based

and Sequence-Based

Computational

Methods

In silico predictors of developability potential can be divided into
sequence-based and structure-based predictors. Sequence-based
predictors typically only require the amino acid sequence as input,
and in some cases formulation-related information such as the pH
value. Conversely, structure-based predictors, which are termed
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tertiary/quaternary structure-based algorithms in Table 2, also
require the protein structure as input whether experimentally deter-
mined or computationally modeled.

Usually, sequence-based predictors are faster and more gener-
ally applicable than structure-based ones, as the amino acid
sequences of antibodies are typically readily available by sequencing
hits from screening campaigns. These algorithms are thus most
useful for ranking many molecules according to biophysical proper-
ties of interest. Conversely, structure-based methods can be used
only when either the structure or a good-quality model are avail-
able. Therefore, these methods are typically more amenable to
small-scale rankings or may be used at later stages of the antibody
preclinical development to facilitate lead engineering. Indeed, most
of these methods enable the identification of potential biophysical
liabilities within antibody molecules, and may provide insights for
their molecular origins [253]. Some of these tools can also suggest
mutation sites, or even specific amino acid substitutions to carry out
in order to improve solubility or stability [172, 249].

Sequence-based predictors either neglect, or only consider to a
minimal extent [242], the effect of the folded structure on the
developability parameter they are predicting. For example, it is
common for stable globular proteins, such as antibodies, to possess
relatively large aggregation-promoting, poorly soluble regions in
their sequence. These regions drive the folding process and are
usually buried in the native state but may elicit aggregation when
exposed on the protein surface. Despite this potential limitation,
sequence-based methods have been shown to perform really well
when predicting the developability potential of antibodies, but only
in cases where all antibodies under scrutiny were known to be well
folded and stable [7, 128].

Mutations can cause aggregation through two main pathways.
In the first, the mutations destabilize the native state, so that poorly
soluble regions usually buried in the hydrophobic core become
transiently exposed to the solvent thus triggering aggregation. In
the second case, mutations may occur on the antibody surface or in
regions where they do not substantially alter the conformational
fluctuations of the native structure. The effects on solubility or
aggregation propensity of mutations in this second class can readily
be predicted with sequence-based methods, which explains the
high performance observed in predicting antibody developability
potential [7, 128]. However, the effect of mutations in the first
class cannot readily be predicted by looking only at the change in
predicted solubility or aggregation propensity, as the aggregation is
triggered by the fact that the solubility of non-native states is
typically much lower than that of the native state, disregarding
the impact on intrinsic solubility of the specific mutations under
scrutiny. Nevertheless, hits from antibody discovery campaigns are
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most often well folded as otherwise they would not be functional
and would not be selected during library panning. Therefore,
sequence-based predictors may be implemented in antibody dis-
covery pipeline just after the sequencing of the hits in a relatively
safe way, as all mutations between the different hits are unlikely to
have caused drastic destabilization and unfolding.

5.3 Structure-Based

Predictions Using

Structural Models

An important aspect to consider when using modeled structures as
input for structure-based in silico tools is how sensitive these tools
are to errors in the atomic coordinates. Some structure-based
methods may perform well as long as residue solvent exposure
and relative distances are correctly modeled, while others may be
highly sensitive to the atomic coordinates of sidechains and their
relative orientation. For example, Fig. 3 shows a comparison
between the predictions of two unrelated structure-based methods
run on two slightly different input models of the same antibody.
The CamSol structurally corrected method is only sensitive to
residue solvent exposure and their relative distance, and in fact its
prediction does not change substantially depending on which
model is chosen as input (Fig. 3b, e). Conversely, the FoldX pre-
diction of stability change upon mutation [258] can vary depend-
ing on which model is selected as input (Fig. 3c, f). FoldX has
ranked among the best predictors of stability change upon muta-
tion when assessed on experimentally determined crystal structures
[253]. Nonetheless, its calculations are exquisitely sensitive to the
atomistic distances between sidechains, and therefore even small
differences in the input atomic coordinates can lead to large differ-
ences in the outcome of the prediction. Some of the in silico tools
listed in Table 2 for the design of mutations that decrease aggrega-
tion propensity, such as Aggrescan3D 2.0 or Solubis, implement
FoldX calculations to account for the impact of the suggested
substitution on conformational stability.

Owing to the high degree of homology between variable
domains from different antibodies, and to the fact that most CDR
loops can be clustered into canonical conformations [259–261],
the vast majority of the Fv region can now be modeled with high
accuracy [262]. The most challenging parts to model remain the
heavy-chain CDR3 loop (CDR-H3), and the relative orientation
between the VH and VL domains, but significant progress has
recently been made also for these regions [263, 264]. However,
as the example in Fig. 3 shows, care must be taken when running
structure-based predictors of developability potential on modeled
antibody structures, and the robustness of the prediction should
ideally be assessed by building multiple models with different tem-
plates or modelling techniques.
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Fig. 3 Analysis of structure-based in silico methods using structural models. (A) Two models of the same
single-domain antibody (VHH) were constructed using the online web server ABodyBuilder [257] (Model
1, green), and the homology-model software Modeller (version 9.16 on template PDB 3b9v; Model 2, tan).
The table (inset) reports the root mean square deviation (RMSD) between the two models calculated using all
atom coordinates (full) or only mainchain backbone atoms (backbone), also by excluding the CDR3 (second
column), which is the region showing the highest discrepancy between the two models (circled in the
structure). (B, C) Scatter plots of the results of structure-based predictors ran on the two models (on x- and
y- axis respectively); the dotted line is the unity line (y¼ x). (B) The CamSol structurally corrected prediction of
solubility for all residues in the structure. (c) FoldX predictions of stability change upon mutation for
167 mutations carried out on the two models at sites of poor solubility as identified from the CamSol
prediction, or of low conservation as identified from a multiple-sequence alignment of similar sequences.
The command FoldX Optimize was performed on each input model before running the prediction of stability
change, and each point represents the average of three runs. Mutations carried out at CDR3 positions are in
green, at sites in contact with the CDR3 in orange, and at other sites in red. The Pearson’s coefficient of
correlation (R) is also reported for each plot. (D, E, F) Like A, B, C respectively, but this time the models are of
the Fv region of the same antibody, comprising both heavy and light chain. Here, both models are constructed
with ABodyBuilder [257]. One is obtained using as template for the framework region and for the heavy–light
chain orientation the PDB structure 5veb (framework sequence identity 99%), while the other also uses 5veb
for the heavy–light chain orientation, but it uses 5hi4 and 3eo9 as templates for heavy and light chain
respectively (framework sequence identity 100%)
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5.4 Empirical

Algorithms

for the Identification

of Developability

Liabilities

The field of small-molecule drug discovery can rely on Lipinski’s
rule of five and its more recent adaptations to guide the selection of
molecules with biophysical properties suitable for drug develop-
ment [265]. In the quest for an analogue for antibody therapeutics,
a recent study systematically compared the physicochemical proper-
ties of clinical-stage antibodies (post-phase I clinical trial) with
those from subsets of the human antibody repertoire, and proposed
a set of rules to profile therapeutic candidates based on five compu-
tational developability guidelines, which are encoded in the Thera-
peutic Antibody Profiler [10]. These guidelines include the
parameters surface hydrophobicity, charge of CDRs, length of
CDRs and symmetry of net charge of the heavy and light chains.
A new antibody candidate is considered acceptable if its properties
fall in the range of those observed for clinical-stage antibodies [10].

These empirical statistical approaches have great potential, as
their accuracy is likely to increase as the number of clinical-stage
antibodies grows and as new guidelines are added to the list.
However, depending on formulation, administration route, fre-
quency, and dosage, each new antibody will have different require-
ments. Furthermore, while these approaches can readily flag
antibodies likely to contain liabilities, they do not provide a quanti-
tative ranking for the selection of the best candidates among those
available, and advances in process development and formulation
may soon redefine the limits of permissible values. Other algo-
rithms in this group include those that can identify potentially
immunogenic motifs (Table 2), as well as those that analyze the
primary sequence or the three-dimensional structure to identify
potential chemical liabilities (e.g., deamidation sites, isomerization
sites, etc.) [15, 45].

5.5 The CamSol

Method of Predicting

Solubility

and Developability

Potential

The pioneering work by Chiti and colleagues [251] showed that a
linear combination of the biophysical properties of the individual
amino acids comprising peptide sequences could accurately predict
changes in aggregation rates caused by mutations. This approach
was then extended to predict the absolute aggregation rates of the
whole sequences of disordered proteins [229], and to enable the
identification of aggregation-prone regions within protein or pep-
tides sequences, with a particular focus of predicting amyloidogenic
regions within disease-related proteins [232, 266, 267].

By building on these advances, in 2015 we introduced the
CamSol method for the prediction of solubility changes upon
mutation in proteins and antibodies, and for the rational design
of solubility-improving mutations [172]. Shortly after, we
generalized the method [268] to enable accurate solubility predic-
tions of more distantly related proteins, including multi-chain com-
plexes such as monoclonal antibodies differing by up to
32 mutations [128] and proteome-wide applications [63].
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To obtain accurate predictions, CamSol first calculates an
intrinsic solubility profile from the physicochemical properties of
the amino acids in the input sequence. This profile consists of a
score for each residue, which depends on both the identity of the
residue itself and the local environment in which this residue is
found (i.e., the neighboring residues) [172]. Then a solubility
score for the whole sequence is calculated from this profile,
accounting for the contributions of both poorly and highly soluble
regions [128]. Therefore, this solubility score is sensitive to the
overall amino acid composition of the input sequence as well as to
the presence of specific patterns of residues, which typically corre-
spond to regions of low or high solubility in the profile.

At the core of the CamSol calculation, there is a phenomeno-
logical combination of amino acid physicochemical properties to
add up in a linear manner including hydrophobicity, charge, α-helix
and β-sheet propensity, with additional corrections for the presence
of patterns of alternating hydrophilic and hydrophobic residues and
for the gatekeeping effect contributed by nearby charges of the
same sign [172]. The coefficients of this linear combination, as well
as some free parameters in the equation used to calculate the
solubility score from the intrinsic profile [128] were fitted on
experimental data. At variance with machine learning methods
that have hundreds, and sometimes thousands, of free parameters
to be optimized (e.g., the connection weights in neural network),
CamSol only has six parameters in the linear combination [172],
and six others in the solubility score calculation [128]. Moreover,
many of these parameters, such as the thresholds that define poorly
or highly soluble regions in the intrinsic profile, can only sensibly
vary in a narrow range. Therefore, relatively few quantitative exper-
imental data are enough to determine these coefficients, which is
particularly advantageous as accurate and quantitative solubility
measurements are scarce in the literature. Parameters were fitted
as described in Refs. [128, 172], using measurements of aggrega-
tion rates from the literature [229], and a dataset of
non-aggregating and aggregating peptides and proteins [269],
which contains totally unrelated sequences rather than mutational
variants of the same protein. After the fitting of these parameters,
the performance of the method was initially tested with a qualitative
validation on solubility measurements from the literature [172]
(55/56 correctly predicted solubility changes when using CamSol
version 2 [128]), and in many other quantitative benchmarks
[7, 128, 172, 217].

When a structure is available, the CamSol method can also be
used to identify surface-exposed aggregation hotspots and to pre-
dict solubility-improving mutations. This result is accomplished by
computing a structurally corrected solubility profile, which is cal-
culated like the intrinsic profile but also accounts for the solvent
exposure and the relative distance of residues in the 3D space
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[172]. This profile can be color-coded on the surface of the protein
and it can be used to identify solvent-exposed regions of low
solubility that may act as aggregation hotspots. In the example in
Fig. 4d, the amino acids responsible for the increased self-associa-
tion of mAb2 with respect to mAb1 were experimentally identified
with a structural proteomics approach based on hydrogen-
deuterium exchange [256] as W30, F31, L561, in quantitative
agreement with the CamSol prediction [128].

Mutations may then be carried out in silico to replace residues
within the identified aggregation hotspots. The resulting protein
variants can readily be ranked according to their contributions to
solubility by using the sequence-based calculation, so that model-
ling the structure of each mutant is not required. As the CamSol
intrinsic calculations can process about 200 sequences per second
on a single computing core of a standard laptop, this procedure can
be applied to sample very large mutational spaces, including com-
binations of mutations at multiple identified sites [7]. We applied
this pipeline to identify aggregation hotspots and predict solubiliz-
ing amino acid substitutions and insertions in the case of a prob-
lematic gammabody [172] (Fig. 4a), a monoclonal antibody [7],
and of disease-related human proteins [127, 217].

The ability of CamSol to rank the solubility of biopharmaceu-
tical antibodies was assessed on a phage-display-derived library
from MedImmune [128]. The mAbs analyzed differed by up to
32 mutations in the Fv region, and a strong correlation was
observed between calculated scores and corresponding solubility
measurements (Fig. 3b). Similarly, a statistically significant correla-
tion between CamSol predictions and solubility measurements was
also reported for mutational variants of a troublesome mAb [205].

Recent advances in deep mutational scanning are beginning to
enable the experimental investigation of the effect of mutations in
living cells at an unprecedented scale [271]. A combination of a
yeast dihydrofolate reductase (DHFR) aggregation assay with deep
mutational scanning was recently used to measure the cytosolic
relative solubility of 791/798 single mutations at all residue posi-
tions of the Amyloid-β42 peptide (Aβ42), and of 99 double
mutants [272]. As Aβ42 is an intrinsically unstructured peptide, it
is devoid of a native state. Therefore, mutations impact solubility
and colloidal stability without the additional complication of the
trade-off with conformational stability [63], thus making this data-
set particularly suitable to assess the performance of the sequence-
based CamSol prediction. Besides, this dataset exhaustively covers
the whole mutational space, as it contains 99.1% of all possible
point mutations across the sequence, therefore representing a
strongly unbiased benchmark opportunity. The average Pearson’s
coefficient of correlation between the outcomes of two replicates of
this experiment under identical conditions is reported to be 0.83
[273], which may be regarded as an upper limit for the
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Fig. 4 Assessment of the performance of the CamSol method of predicting protein solubility. (A–C) Scatter
plots of different experimental readouts of solubility of different molecules (y-axis) as a function of their
CamSol solubility score calculated from the sequence alone (x-axis). (A) Monomer concentration determined
with SEC after incubation of rationally designed mutational variants of single-domain antibody (WT). The
structurally corrected CamSol profile is color-coded (see color-bar) on the surface of homology models of the
WT and of the most soluble variant (the triple-mutant EEE, adapted from Ref. 172). (B) Apparent solubility
expressed as the value of PEG1/2 of a mAb library [128, 172] obtained with phage display. Regression line and
reported Pearson’s coefficients of correlation (R) are calculated by excluding the outlier point circled in red
(mAb3) (adapted from Ref201). (C) Yeast cytosol solubility assessed with a DHFR assay of 791 different single
mutants and 99 double mutants of the Aβ42 peptide [270]. The points in orange in the plateau are excluded
from the calculation of the regression line and reported correlation coefficient (see text). (D) The structurally
corrected solubility profile is color-coded (see color-bar) on the surface of homology models of the Fv region of
mAb2 (top left) and mAb1 (lower right). Aggregation-promoting regions are in orange/red, whereas
aggregation-protecting regions are in light blue/blue. The labeled residue positions on mAb2 (W30, F31,
L57) are those that have been experimentally identified as aggregation hotspots [256]. The plot shows the
measured high performance SEC monomer retention time [256] for various mAb variants as a function of their
solubility score. mAb2 has the residue types W, F, and L at the hotspot positions 30, 31, and 57, respectively,
while mAb1 has S, T, and T. The six variants between mAb2 and mAb1 are named according to which mAb2
positions have been mutated to the corresponding mAb1 amino acid (e.g., WFT is mAb2 L57T). The line serves
as a visual guide (adapted from Ref. 128). (E) Matrix of Pearson’s coefficients of correlation calculated
comparing all combinations of in vitro developability measurements and CamSol sequence-based predictions
for a library of 17 mAbs. The corresponding p-values are reported below the coefficients, and the matrix is
color-coded according to the correlation strength (see color-bar, adapted from Ref. 7). Experimental data used
in this figure were gathered at the University of Cambridge in our laboratory (A), Medimmune UK (B),
Medimmune UK and University of Leeds (D), the University of Washington (C), and Novo Nordisk Denmark (E)



predictability of these data since a higher correlation would suggest
one is also predicting the experimental noise. The correlation with
the sequence-based CamSol prediction is R ¼ 0.77. The scatter
plot in Fig. 4c further reveals a plateau at high experimental solu-
bility values, suggesting that the experiment may not be able to
distinguish the solubility of those variants, as they are soluble
enough to avoid aggregation altogether at the concentration at
which they are expressed in yeast cells. Conversely, the computa-
tional prediction is not limited by experimental constraints and
hence possesses a broader dynamic range. Removing the points in
the plateau further increases the correlation between CamSol and
the experiment to R ¼ 0.8, which indicates that the errors in the
CamSol predictions are comparable with those between experimen-
tal replicates (Fig. 4c). This is very encouraging in terms of the
long-term strategy discussed in this review article of replacing
experimental measurements with computational predictions when
possible.

Finally, in recent study on a library of 17 mAbs we quantita-
tively compared commonly used in vitro developability assays with
each other, with one resource-intensive solubility measurement of
ammonium sulfate precipitation, and with the sequence-based
CamSol predictions as well as other in silico predictors [7]. The
results showed that the in silico predicted solubility scores correlate
closely with the experimental relative solubility from the ammo-
nium sulfate precipitation assay, and also with many developability
assays with the expected exception of stability readouts such as the
melting temperature. In particular, the strongest correlations were
observed with assays that measure nonspecific interactions. Overall,
the resulting correlations observed between CamSol and these
experimental readouts were at par, and in some instances better,
than those among the different in vitro assays with each other [7]
(Fig. 4e). This study demonstrates how the selection and design of
lead candidates with a high developability potential can be facili-
tated by rapid computational predictions that only require the
amino acid sequence as an input.

In summary, CamSol predictions rely on a combination of
physicochemical properties of amino acids. These include charge,
hydrophobicity, and propensity to form secondary structure ele-
ments, which are first considered at the individual residue level,
then averaged locally across sequence regions, and finally consid-
ered globally to yield a solubility score. In particular, while the
calculation of the structurally corrected profile is necessary to iden-
tify suitable mutation or insertion sites, the solubility prediction is
performed using only the amino acid sequence. This aspect not
only makes in silico solubility screening significantly faster, but it
means that the method is readily applicable to the screening of
antibody libraries without the need of structural modelling, and
thus it is fully independent from model accuracy.
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The results that we have obtained over the years using CamSol
show strong quantitative correlations with experimental measure-
ments of relative solubility or of developability potential (Fig. 4).
Notably, these measurements were carried out with different exper-
imental techniques, on widely different molecules ranging from
monoclonal antibodies to unstructured peptides, and in different
laboratories. Taken together, these strong correlations suggest that
CamSol predictions can greatly facilitate the screening of develop-
ability potential and more specifically of solubility. In particular, at
the initial stages of antibody discovery campaigns, when numbers
of candidates can be very high while yield and purity are often low,
such predictions may entirely replace experiments.

6 Conclusions: Incorporation of Silico Tools in Antibody Discovery Pipelines

Therapeutic proteins and antibodies must not only bind to their
targets and elicit the required biological effects, but must also be
free from developability issues, which include poor stability or
solubility, high levels of aggregation, various chemical liabilities,
poor specificity, or immunogenicity. Therefore, not every antibody
with the desired biological activity can be developed into a drug, as,
unlike natural antibodies, therapeutic antibodies must endure many
stresses during production, purification, shipping, high-
concentration storage, and administration. The stringent require-
ments of therapeutic applications imply that several biophysical
properties of biotherapeutics must be optimized beyond typical
natural levels, a task that poses substantial challenges in the pro-
cesses of candidate selection and optimization.

In this review, we have first discussed the key biophysical prop-
erties that underpin antibody developability and their interplay. We
have then described the wide range of in vitro assays that are now
available to measure biophysical properties or parameters that are
predictive of developability potential, and the challenges associated
with rigorous developability assessments, especially at the early
stages of preclinical development. Next, we have given an overview
of the growing number of computational methods available to
predict properties that are relevant for antibody development, and
we have discussed in more depth the CamSol method that we have
developed.

At present, no single in vitro developability readout seems to be
fully predictive of key properties for antibody development, such as
stability and aggregation during long-term storage [8, 207]. The
implementation of multiple experimental assays in the antibody
discovery phase is challenged by the high number of candidates to
screen, and by the fact that these are typically produced in minute
amounts and low purity, which may affect quality and reliability of
experimental measurements. Conversely, in silico predictors offer
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an inexpensive alternative that can readily be implemented for as
many antibodies as needed, provided that the sequence is known.

After decades of research, some in silico predictors are now able
to accurately recapitulate biophysical properties of interest in many
cases, a feature that makes them highly competitive with experi-
ments. As we discussed in this review article, two types of in silico
methods may be particularly suitable for implementation in anti-
body discovery pipelines. Those that identify liabilities, and there-
fore can flag potentially problematic candidates, and those that can
quickly rank the candidates according to one or more biophysical
property of interest. Liabilities include immunogenic regions
[270, 273, 274], sites of chemical instability (e.g., deamidation,
etc.) [3, 9, 44, 45], as well as other potentially problematic motifs
identified using empirical algorithms [10]. Antibody candidates
predicted to contain one or more of such liabilities may readily be
excluded from further progression along the pipeline (Fig. 5).

The vast majority of available approaches to discover novel
antibodies for a target of interest rely on screening procedures,
which typically yield a readout proportional to the strength of
antigen binding (e.g., enrichment ratios from deep sequencing,
ELISA absorbance values, etc.) [116, 275]. This knowledge can
readily be combined with in silico predictions of relevant biophysi-
cal properties, such as aggregation propensity or solubility, so that
only those candidates embodying the best compromise between
binding strength and predicted developability potential may be
taken forward. The implementation of this computer-aided screen-
ing can readily lead to the selection of a shortlist of lead candidates.
This shortlist will contain a manageable number of antibodies that
can be produced to high purity and subjected to further functional
characterization as well as comprehensive in vitro developability
screening to select the final leads to be taken forward for preclinical
and clinical studies (Fig. 5).

In perspective, notwithstanding the promising advances in the
computational predictions of developability potential, there is still a
need for improved algorithms that can reliably calculate the impact
of formulation and storage conditions. Indeed, there is a lack of
effective computational methods that assess the compatibility of
candidate protein drugs with different buffers, excipients and pro-
cess conditions [135]. Most in silico predictors compare best with
experimental data obtained at near-physiological conditions, but
not all biopharmaceuticals are formulated at neutral pH or at salt
concentrations that are isotonic with blood plasma [43]. Despite
this limitation, the ranking of different antibody candidates should
be relatively robust to changes in formulation conditions, at least
within a pharmaceutically relevant range. Most exceptions to this
rule typically result from molecules getting too close to, or crossing
their isoelectric point (pI) [205], which can also be calculated quite
accurately in silico thus allowing to flag those molecules for which
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pipelines. Schematic of a generic funneled antibody discovery pipeline with
added steps of computational analysis. The width of the funnel at different
positions is representative of the number of candidates going through the
pipeline. The initial library (top) may be obtained from animal immunization,
DNA laboratory construction, or other ways. The library is then screened in vitro
(steps with red edge) for antigen binding or for biological activity and, once the
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figure is for the prediction of solubility. The scatter plot is an example of
multiparametric lead selection, whereby those candidates taken forward are
those embodying the best compromise between in vitro readouts (e.g., antigen
binding strength in the y-axis of the plot) and in silico prediction (e.g., solubility
on the x-axis). The incorporation of in silico tools enables the selection of a
shortlist containing a manageable number of hits, which can thus be produced to
high purity for further functional characterization and comprehensive in vitro
developability assessment, so that only the very best hits are then taken forward
for preclinical and clinical studies
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the developability prediction is less likely to be accurate at the
formulation pH [276]. More importantly, however, computational
methods of predicting developability potential currently offer little
insights for formulation optimization, which is another key aspect
for the successful development of biotherapeutics. As the through-
put of experimental method improves, and more data become
available for different molecules in different formulation condi-
tions, we anticipate that the next generation of in silico tools will
be able to accurately tackle this issue.

In summary, the use of in silico tools from the early stages of
antibody discovery can provide considerable advantages in terms of
high-throughput, short analysis time, and low costs. Since they
have no material requirements, these methods can easily be imple-
mented at any point of the biopharmaceutical pipeline, as long as at
least the sequence of the candidates is known. Additionally, some of
these tools may help to build a preliminary understanding of certain
properties of lead candidates that would otherwise be available only
much later in the development phase [135, 253]. The increasing
performance of computational predictors of developability poten-
tial observed in the last few years indicates that these tools can
reduce or eliminate the need of carrying out laborious experiments
for large numbers of antibody candidates. We believe that it is now
particularly timely to incorporate in silico tools as integrated com-
ponents of antibody discovery pipelines, as they can significantly
facilitate the rapid and early selection of antibodies with optimal
developability potential. We anticipate that, in the future, compu-
tational methods will play an increasingly important role in the
discovery and optimization of therapeutic antibodies [6].
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Eppink M, Hubbuch J (2017) Characteriza-
tion of highly concentrated antibody solution
- a toolbox for the description of protein
long-term solution stability. mAbs
9:1169–1185

143. Vivian JT, Callis PR (2001) Mechanisms of
tryptophan fluorescence shifts in proteins.
Biophys J 80:2093–2109

144. Saluja A, Kalonia DS (2008) Nature and con-
sequences of protein-protein interactions in

Assessment of Therapeutic Antibody Developability by Combinations. . . 107



high protein concentration solutions. Int J
Pharm 358:1–15

145. Curtis RA, Prausnitz JM, Blanch HW (1998)
Protein-protein and protein-salt interactions
in aqueous protein solutions containing con-
centrated electrolytes. Biotechnol Bioeng
57:11–21

146. Saito S, Hasegawa J, Kobayashi N, Kishi N,
Uchiyama S, Fukui K (2012) Behavior of
monoclonal antibodies: relation between the
second virial coefficient (B2) at low concen-
trations and aggregation propensity and vis-
cosity at high concentrations. Pharm Res
29:397–410

147. Blanco MA, Perevozchikova T, Martorana V,
Manno M, Roberts CJ (2014) Protein–pro-
tein interactions in dilute to concentrated
solutions: α-Chymotrypsinogen in acidic con-
ditions. J Phys Chem B 118:5817–5831

148. Ruppert S, Sandler SI, Lenhoff AM (2001)
Correlation between the osmotic second virial
coefficient and the solubility of proteins. Bio-
technol Prog 17:182–187

149. Le Brun V, Friess W, Bassarab S, Mühlau S,
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